
1 General

1.1 Theory

Regression model of some property, y, for some system, X̃:

y
(
X̃
)

=
∑
i

αi K
(
X̃,Xi

)
(1)

E.g. Using Gaussian kernel function with Frobenius norm:

Kij = K (Xi,Xj) = exp

(
−‖Xi −Xj‖22

2σ2

)
(2)

Regression coefficients are obtained through kernel matrix inversion and multiplication with refer-
ence labels

α = (K + λI)−1y (3)

1.2 QML Code

Before starting the exercises, you will need the QML code which resides on github (https://github.
com/qmlcode/qml). Carry out the following steps to install QML and get the data files (and solu-
tions) to the exercises. On most Linux and Mac systems you can install QML from the official PyPI
Python repository:

pip install qml --user -U

Follow this link for documentation https://qmlcode.github.io/qml.html#

2 Tutorial exercises

Clone the following GIT repository to access the necessary scripts and QM7 dataset (atom-
ization energies and relaxed geometries at PBE0/def2-TZVP level of theory) for ∼7k GDB1-7
molecules.12

git clone https :// github.com/qmlcode/tutorial.git

This also includes Python scripts with solutions to each exercise.

Exercise 2.1: Generating representations

In this exercise we use QML to generate the Coulomb matrix and Bag of bonds (BoB) representa-
tions.3

In QML data can be parsed via the Compound class, which stores data and generates representations
in Numpy’s ndarray format. If you run the code below, you will read in the file ”qm7/0001.xyz”
(a methane molecule) and generate a coulomb matrix representation (sorted by row-norm) and a
BoB representation.

1Rupp et al, Phys Rev Letters, 2012.
2Ruddigkeit et al, J Chem Inf Model, 2012.
3Montavon et al, New J Phys, 2013.
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import qml

# Create the compound object mol from the file qm7 /0001. xyz which happens to be methane
mol = qml.Compound(xyz="qm7 /0001. xyz")

# Generate and print a coulomb matrix for compound with 5 atoms
mol.generate_coulomb_matrix(size=5, sorting="row -norm")
print(mol.coulomb_matrix)

# Generate and print BoB bags for compound containing C and H
mol.generate_bob(size=5, asize={"C":2, "H":5})
print(mol.bob)

The representations are simply stored as 1D-vectors. Note the keyword size which is the largest
number of atoms in a molecule occurring in test or training set. Additionally, the coulomb matrix
can take a sorting scheme as keyword, and the BoB representations requires the specifications of
how many atoms of a certain type to make room for in the representations.

Lastly, you can print the following properties which is read from the XYZ file:

# Print other properties stored in the object
print(mol.coordinates)
print(mol.atomtypes)
print(mol.nuclear_charges)
print(mol.name)
print(mol.unit_cell)

See the online SOURCE DOCUMENTATION for this and further details qml.representations-
module here: https://qmlcode.github.io/qml.html#module-qml.representations

Exercise 2.2: Generating Kernel matrix

In this exercise we generate a Gaussian kernel matrix, K, using the representations, X, which are
generated similarly to the example in the previous exercise:

Kij = exp

(
−‖Xi −Xj‖22

2σ2

)
(4)

QML supplies functions to generate the most basic kernels (E.g. Gaussian, Laplacian). In the exer-
cise below, we calculate a Gaussian kernel for the QM7 dataset.

In order to save time you can import the entire QM7 dataset as Compound objects from the file
tutorial data.py found in the GitHub repository.

# Import QM7 , already parsed to QML
from tutorial_data import compounds

from qml.kernels import gaussian_kernel

# For every compound generate a coulomb matrix or BoB
for mol in compounds:

mol.generate_coulomb_matrix(size=23, sorting="row -norm")
# mol. generate_bob (size =23, asize ={"O":3, "C":7, "N":3, "H":16 , "S":1})

# Make a big 2D array with all the representations
X = np.array([mol.coulomb_matrix for mol in compounds ])
# X = np.array ([ mol.bob for mol in compounds ])

# Print all representations
print(X)

# Run on only a subset of the first 100 (for speed)
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X = X[:100]

# Define the kernel width
sigma = 1000.0

# K is also a Numpy array
K = gaussian_kernel(X, X, sigma)

# Print the kernel
print K

Exercise 2.3: Kernel-Ridge Regression

With the kernel matrix and representations sorted out in the previous two exercise, we can now
solve the α regression coefficients (see Eq. 5):

α = (K + λI)−1y (5)

One of the most efficient ways of solving this equation is using a Cholesky-decomposition. QML in-
cludes a function named cho solve to do this via the math module qml.math.

In this step it is convenient to only use a subset of the full dataset as training data (see be-
low). The following builds on the code from the previous step. To save time, you can import
the PBE0/def2-TZVP atomization energies for the QM7 dataset from the file tutorial data.py.

This has been sorted to match the ordering of the representations generated in the previous exer-
cise.
Extend your code from the previous step with the code below:

from qml.math import cho_solve
from tutorial_data import energy_pbe0

# Assign 1000 first molecules to the training set
X_training = X[:1000]
Y_training = energy_pbe0 [:1000]

sigma = 4000.0
K = gaussian_kernel(X_training , X_training , sigma)
print(K)

# Add a small lambda to the diagonal of the kernel matrix
K[np.diag_indices_from(K)] += 1e-8

# Use the built -in Cholesky - decomposition to solve
alpha = cho_solve(K, Y_training)

print(alpha)

Exercise 2.4: Making predictions

With the α regression coefficients from the previous step, we have (successfully) trained the ma-
chine, and we are now ready to do predictions for other compounds. This is done using the following
equation:

y
(
X̃
)

=
∑
i

αi K
(
X̃,Xi

)
(6)

In this step we further divide the dataset into a training and a test set. Try using the last 1000
entries as test set.
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# Assign 1000 last molecules to the test set
X_test = X[ -1000:]
Y_test = energy_pbe0 [ -1000:]

# calculate a kernel matrix between test and training data , using the same sigma
Ks = gaussian_kernel(X_test , X_training , sigma)

# Make the predictions
Y_predicted = np.dot(Ks, alpha)

# Calculate mean -absolute -error (MAE ):
print np.mean(np.abs(Y_predicted - Y_test ))

Exercise 2.5: Learning curves:

Repeat the prediction from Exercise 2.4 with training set sizes of 1000, 2000, and 4000 molecules.
Note the MAE for every training size. Plot a learning curve of the MAE versus the training set size.

Generate a learning curve for the Gaussian and Laplacian kernels, as well using the coulomb
matrix and bag-of-bonds representations.

Which combination gives the best learning curve? Note you will have to adjust the kernel width
(sigma) underway.

Exercise 2.6: Delta learning:

A powerful technique in machine learning is the delta learning approach. Instead of predicting
the PBE0/def2-TZVP atomization energies, we shall try to predict the difference between DFTB3
(a semi-empirical quantum method) and PBE0 atomization energies. Instead of importing the
energy pbe0 data, you can import the energy delta and use this instead

from tutorial_data import energy_delta

Y_training = energy_delta [:1000]
Y_test = energy_delta [ -1000:]

Finally re-draw one of the learning curves from the previous exercise, and note how the prediction
improves.
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