
Predicting Properties of Molecules and Materials

Matthias Rupp

Fritz Haber Institute of the Max Planck Society, Berlin, Germany

2017 NYU Shanghai Summer School on
Machine Learning in the Molecular Sciences

June 12–16, Shanghai, China



Outline

1. Validation
statistical validation, free parameters

2. Predicting experiments
cheminformatics, examples

3. Predicting calculations
QM/ML models, examples

2



Validation

Why?

• assess model performance
• optimize free parameters (hyperparameters)

Which statistics?
• root mean squared error (RMSE)
• mean absolute error (MAE)
• maximum error
• squared correlation coe�cient (R2)

What else can we learn from validation?
• distribution of errors, not only summary statistics
• convergence of error with number of samples
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Validation

Golden rule:
Never use training data for validation

Violation of this rule leads to overfitting
by measuring flexibility in fitting instead of generalization ability
rote learner example

If there is su�cient data:
• divide data into two subsets, training and validation
• build model on training subset
• estimate error of trained model on validation subset

Sometimes an external validation set is used in addition.
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Statistical validation

If too few data, statistical re-sampling methods can be used,
such as cross-validation, bagging, bootstrapping, jackknifing

k-fold cross-validation:

• divide data into k evenly sized subsets
• for i = 1, . . . , k,

build model on union of subsets {1, . . . , k} \ {i}
and validate on subset i

All model building steps must be repeated for data splits:
• all pre-processing such as feature selection and centering
• optimization of hyperparameters

5
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Hyperparameters: physically motivated choices

Length scale ‡:

‡ ¥ Îx ≠ zÎ1
median nearest neighbor distance

Regularization strength ⁄:

‚= noise variance (Bayesian)
‚= leeway around yi for fitting
∆ target accuracy
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Hyperparameters: statistically motivated choices

• data-driven method for
choosing hyperparameters

• optimize using grid search or
gradient descent

• use statistical validation to
estimate error

• for validation and
hyperparameter optimization,
use nested data splits
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Nested data splits
• never use data from training in validation

• for performance assessment and hyperparameter optimization,
use nested cross-validation or nested hold-out sets

• beware of overfitting

Example 1: plain overfitting
◊ train on all data, predict all data
X split data, train, predict
Example 2: centering
◊ center data, split data, train & predict
X split data, center training set, train, center test set, predict
Example 3: cross-validation with feature selection
◊ feature selection, cross-validation
X feature selection for each split of cross-validation
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Predicting experiments



The combinatorial nature of chemical/materials space

How large is chemical space?
• how many stoichiometries

are possible with N = 40
protons?

• number of ways to write N
as sum of positive integers

• Young-Ferrers diagrams
• > 3.7 · 104 for N = 40

10
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The combinatorial nature of chemical/materials space
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Figure 4: Molecules decoded from randomly-sampled points in the latent space of a variational
autoencoder, near to a given molecule (aspirin [2-(acetyloxy)benzoic acid], highlighted in
blue).

to realistic drug-like molecules. In a related experiment, and following the success of other
generative models of images, we performed interpolations in chemical space. Random drugs
from the list of FDA approved molecules were selected and encoded by sampling the mean
of the VAE. We then performed a linear grid interpolation over two dimensions. We decoded
each point in latent space multiple times and report the one whose latent representation,
once re-encoded, is the closest to the sampled point (Figures 14-5)

Bayesian optimization of drug-like molecules The proposed molecule autoencoder
can be used to discover new molecules with desired properties.

As a simple example, we first attempt to maximize the water-octanol partition coe�cient
(logP), as estimated by RDkit. [43] logP is an important element in characterizing the drug-
likeness of a molecule, and is of interest in drug design. To ensure that the resulting molecules
to be easy to synthesize in practice, we also incorporate the synthetic accessibility [44] (SA)
score into our objective.

Our initial experiments, optimizing only the logP and SA scores, produced novel molecules,
but ones having unrealistically large rings of carbon atoms. To avoid this problem, we added
a penalty for having carbon rings of size larger than 6 to our objective.
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• molecule space:
graph theory

• materials space:
group theory

• combinatorial
explosion

aspirin derivatives
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Gómez-Bombarelli et al, arXiv, 2016



Learning across chemical space

12
Chang, von Lilienfeld: CHIMIA 68, 602, 2014
von Lilienfeld, Int. J. Quant. Chem. 113, 1676, 2013.



“Activity cli�s”

• �pKa = 0.24
• phenylamine

2-aminophenol

• �pKa = 1.22
• benzoic acid

2-hydroxybenzoic acid

13
Schönherr, Cernak: Angew. Chem. Int. Ed. 52, 12256, 2013



Activation of PPAR“

Target
• peroxisome proliferator-activated receptor “ (PPAR“)
• related to type 2 diabetes and dyslipidemia

Methods
• Gaussian process regression
• descriptors + graph kernel
• cellular reporter gene assay

Results
• 8 out of 15 compounds active
• one selective PPAR“ agonist with novel sca�old

(derivative of natural product truxillic acid),
EC50 = 10.03 ± 0.2µM

14
Rupp et al., ChemMedChem 5(2): 191, 2010.



Acid dissociation constants
• “An acid (base) is a species having a tendency to lose (add on) a

proton.” (Brönsted, 1923)
• pKa expresses strength of acids and bases (pH where 50 % ionized)

• gray dots: descriptors from electron frontier theory
black dots: graph kernel
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Predicting calculations



Rationale

“The underlying physical laws necessary for [. . .] chemistry are thus
completely known, and the di�culty is only that the exact applica-
tion of these laws leads to equations much too complicated to be
soluble. It therefore becomes desirable that approximate practical
methods of applying quantum mechanics should be developed.”

Paul A.M. Dirac

17
Dirac, Proc. Roy. Soc. A 123: 714, 1929.



The problem of computational cost

• systematic computational study and design of molecules and
materials requires accurate atomic-scale treatment

• accurate numerical solutions have high computational cost

Numerical approximations to Schrödinger’s equation:

Abrv. Method Runtime
FCI Full Configuration Interaction (CISDTQ) O(N10)
CC Coupled Cluster (CCSD(T)) O(N7)
FCI Full Configuration Interaction (CISD) O(N6)
MP2 Møller-Plesset second order perturbation theory O(N5)
HF Hartree-Fock O(N4)
DFT Density Functional Theory (Kohn-Sham) O(N3≠4)
TB Tight Binding O(N3)
MM Molecular Mechanics O(N2)

N = system size
18



The problem of computational cost

This limits

• number of screened systems

Castelli et al, Energy Environ Sci 12, 2013

• length of simulations

Liwo et al, Proc Natl Acad Sci USA 102: 2362, 2005

• size of systems

Role of Dispersion Interactions in the Polymorphism and
Entropic Stabilization of the Aspirin Crystal

Anthony M. Reilly* and Alexandre Tkatchenko†

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
(Received 3 April 2014; revised manuscript received 28 May 2014; published 30 July 2014)

Aspirin has been used and studied for over a century but has only recently been shown to have an
additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are
degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of
the less abundant form II. Here, first-principles calculations provide an alternative explanation based on
free-energy differences at room temperature. The explicit consideration of many-body van der Waals
interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a
subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a
systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of
form II as making it metastable.

DOI: 10.1103/PhysRevLett.113.055701 PACS numbers: 81.30.Hd, 61.50.Lt, 62.20.−x, 71.15.−m

The ability of molecules to yield multiple solid forms, or
polymorphs, has significance for diverse applications
ranging from drug design and food chemistry to nonlinear
optics and hydrogen storage [1]. For example, different
solid forms of an active pharmaceutical ingredient can
affect its bioavailability and formulation, sometimes in
unpredictable ways [2,3]. The computational modeling of
polymorphism has seen many advances in recent years, in
both generation of reasonable structures [4,5] and optimi-
zation and accurate ranking of these polymorphs [6,7].
Even when polymorphs can be predicted for a given
molecule, theory and experiment often struggle to under-
stand why a given polymorph is stable under certain
thermodynamic conditions [8].
Aspirin (acetylsalicylic acid) is a widely used analgesic

that clearly illustrates many of the challenges of under-
standing polymorphism. A second less common form of
aspirin has only been predicted [9] and characterized [10,11]
in recent years. State-of-the-art quantum-chemical calcula-
tions predict very small energy differences of the order of
!0.1 kJ=mol between the two polymorphs [12,13], making
both solid forms essentially degenerate in terms of lattice
energy. This raises the question of why the second form took
so long to be discovered and why the first form appears to be
more abundant. A possible explanation is that kinetic effects,
such as slow growth of form II, may play a role, and, indeed,
growth of form II can promoted by certain conditions
[10,11]. Nanoindentation experiments suggest that, despite
their similar structures (Fig. 1), the two polymorphs have

markedly different mechanical properties, with form II
appearing to be softer and potentially susceptible to shear
instability [14]. However, computational studies of their
elastic properties have also given conflicting results [9,15].
To accentuate this controversy, form II has been observed to
revert to form I slowly at room temperature and upon
grinding [14], suggesting that form I is thermodynamically
more stable. However, no viable mechanism for its thermo-
dynamic stability has yet been established.
Recently, a number of studies have highlighted the

importance of many-body van der Waals (vdW) interactions
in condensed molecular systems, especially in the context of
vdW-inclusive density-functional theory (DFT) [7,16–18].
The many-body dispersion (MBD) approach [19,20] has
been shown to systematically improve the accuracy of DFT

FIG. 1 (color online). (Top) The unit-cell structures of form-I
(left) and form-II (right) aspirin (acetylsalicylic acid). The b
direction is perpendicular to a and c. (Bottom) View of form-I
(left) and form-II (right) aspirin showing the different interlayer
hydrogen-bonding motifs.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PRL 113, 055701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

1 AUGUST 2014

0031-9007=14=113(5)=055701(5) 055701-1 Published by the American Physical Society

Image: Reilly & Tkatchenko, Phys Rev Lett 2014

• phenomena studied

Image: Hiller et al, Nature 476: 236, 2011
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Machine learning for quantum mechanics

• correlated inputs yield correlated outputs
• exploit redundancy in related QM calculations
• Interpolate between QM calculations using ML
• smoothness assumption (regularization)
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• reference calculations
— QM
- - - ML

20



Relationship to other models

quantum chemistry

generally applicable
no or little fitting
form from physics
deductive
few or no parameters
slow
small systems

force fields

limited domain
fitting to one class
form from physics
mostly deductive
some parameters
fast
large systems

machine learning

generally applicable
refitted to any dataset
form from statistics
inductive
many parameters
in between
large systems

21
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Interdisciplinary field with rapid growth in last years
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Examples

• screening: chemical interpolation

Rupp et al., Phys. Rev. Lett. 108(5): 058301, 2012
• molecular dynamics: potential energy surfaces

Behler, Phys. Chem. Chem. Phys. 13(40): 17930, 2011
• dynamics simulations: crack propagation in silicon

Li et al, Phys Rev Lett 114: 096405, 2015.
• crystal structure prediction: (meta)stable states

Ghiringhelli et al., Phys. Rev. Lett. 114(10): 105503, 2015
• density functional theory: kinetic energies

Snyder et al., Phys. Rev. Lett. 108(25): 253002, 2012
• transition state theory: dividing surfaces

Pozun et al., J. Chem. Phys. 136(17): 174101, 2012
• amorphous systems: relaxation in glassy liquids

Schoenholz, Cubuk et al, Nat. Phys. 12(5): 469, 2016
• design: stable interface search

Kiyohara, Oda, Tsuda, Mizoguchi, Jpn. J. Appl. Phys. 55(4): 045502, 2016
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Predicting atomization energies

• 7 165 small organic molecules (H,C,N,O,S; 1–7 non-H atoms)
• DFT PBE0 atomization energies
• kernel ridge regression, Gaussian kernel k(M,MÕ) = exp

!
≠d2(M,MÕ)
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Extension to other properties
Learning the map from molecular structure to molecular properties

• various properties
• various levels of theory
• small organic molecules
• Coulomb matrix representations
• kernel learning,

deep neural networks
• for 5k training molecules, errors

are comparable to the reference

25
Montavon et al, New. J. Phys., 2013; Hansen et al, J. Chem. Theor. Comput., 2013.



Molecular energies

• Gaussian process regression
• regularized entropy match kernel (Sinkhorn

distance) with smooth overlap of atomic
positions representation

• MAE = 0.6 kcal/mol, RMSE = 0.9 kcal/mol

26

Learning rate & kernel hyperparameters
Excellent learning rate up to the full dataset
The kernel can be modified with a non-linear transform K � K �, and the
KRR procedure can be regularized with a diagonal term ‡1. The REMatch
kernel contains itself the entropy regularization parameter “, and the
SOAP kernels depend on the environment cutoff rmax
Lots of room for development - e.g. on the alchemical kernel front....
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15 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules

De, Bártok, Csányi, Ceriotti: Phys. Chem. Chem. Phys. 18, 13754, 2016



Deep tensor neural networks

2

FIG. 1: Prediction and explanation of molecular energies with a deep tensor neural network (DTNN). (A) Molecules are encoded as
input for the neural network by a vector of nuclear charges and an inter-atomic distance matrix. This description is complete and invariant
to rotation and translation. (B) Illustration of the network architecture. Each atom type corresponds to a vector of coe�cients c(0)

i which is
repeatedly refined by interactions vi j. The interactions depend on the current representation c(t)

j as well as the distance di j to an atom j. After
T iterations, an energy contribution Ei is predicted for the final coe�cient vector c(T )

i . The molecular energy E is the sum over these atomic
contributions. (C) Mean absolute errors of predictions for the GDB-9 dataset of 129,000 molecules as a function of the number of atoms. The
employed neural network uses two interaction passes (T = 2) and 50000 reference calculation during training. The inset shows the error of
an equivalent network trained on 5000 GDB-9 molecules with 20 or more atoms, as small molecules with 15 or less atoms are added to the
training set. (D) Extract from the calculated (black) and predicted (orange) molecular dynamics trajectory of toluene. The curve on the right
shows the agreement of the predicted and calculated energy distributions. (E) Energy contribution Eprobe (or local chemical potential �H(r),
see text) of a hydrogen test charge on a

�
i �r � ri��2 isosurface for various molecules from the GDB-9 dataset for a DTNN model with T = 2.
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FIG. 1: Prediction and explanation of molecular energies with a deep tensor neural network (DTNN). (A) Molecules are encoded as
input for the neural network by a vector of nuclear charges and an inter-atomic distance matrix. This description is complete and invariant
to rotation and translation. (B) Illustration of the network architecture. Each atom type corresponds to a vector of coe�cients c(0)

i which is
repeatedly refined by interactions vi j. The interactions depend on the current representation c(t)

j as well as the distance di j to an atom j. After
T iterations, an energy contribution Ei is predicted for the final coe�cient vector c(T )

i . The molecular energy E is the sum over these atomic
contributions. (C) Mean absolute errors of predictions for the GDB-9 dataset of 129,000 molecules as a function of the number of atoms. The
employed neural network uses two interaction passes (T = 2) and 50000 reference calculation during training. The inset shows the error of
an equivalent network trained on 5000 GDB-9 molecules with 20 or more atoms, as small molecules with 15 or less atoms are added to the
training set. (D) Extract from the calculated (black) and predicted (orange) molecular dynamics trajectory of toluene. The curve on the right
shows the agreement of the predicted and calculated energy distributions. (E) Energy contribution Eprobe (or local chemical potential �H(r),
see text) of a hydrogen test charge on a

�
i �r � ri��2 isosurface for various molecules from the GDB-9 dataset for a DTNN model with T = 2.
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Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko: Nat. Comm., 13890, 2017



Local properties

⟶ z

Q
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Local properties

Local interpolation is global extrapolation.

æ

• linear scaling of computational e�ort with system size
• size consistent in the limit
• requires partitioning for global properties

29
Bartók et al, Phys Rev Lett 104, 2010 Behler, J Phys Condens Matter 26, 2014
Rupp et al, J Phys Chem Lett 6, 2015



Local properties

Molecular model

f (x)
˙ ˝¸ ˚

O

O NNN

NNN
NNN

NN

¸ ˚˙ ˝
x

f (x) = qn
i=1 –ik(xi , x)

n = number of molecules
x = representation of molecule

Atomic model
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x

f (x)`̀
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f (x) = qn
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n = number of atoms
x = representation of atom
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Local properties
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Property Ref. RMSE maxAE R2

13C ” / ppm 2.4 5.8 ± 0.3 36 ± 8 0.988 ± 0.001
1H ” / ppm 0.11 0.42 ± 0.02 3.2 ± 1.1 0.954 ± 0.005
1s C ” / mEh 7.5 6.5 ± 0.3 34 ± 17 0.971 ± 0.002
FC / mEh / a0 1 4.7 ± 0.15 29 ± 5.5 0.983 ± 0.002
FH / mEh / a0 1 1.1 ± 0.03 7.4 ± 2.6 0.996 ± 0.003

10 k training samples, 15 repetitions 31



Local properties
Dataset

• linear polyethylene (CH2CH2)n, doped with N and O
• varying length in multiples of basic unit (29 non-H atoms)
• DFT / PBE0 / def2TZVP using Gaussian 09

Scaling
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• training on shortest
polymers only

• prediction of poly-
mers of increasing
size (up to x10)
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Summary

1. validation must follow the golden rule
2. examples of predicting experimental outcomes
3. examples of predicting computational outcomes

33



Molecular dynamics — adsorption on surfaces
• since early 1990s > 35 studies on molecules
• many studies using artificial neural networks

for potential energy surface interpolation
J Behler 
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that could not be addressed by other methods equally well. 
For most chemical problems a significant extension of the 
system size would be required to make NNPs a competitive 
approach in the field of atomistic simulations.

There are several conceptual problems that need to be 
solved to extend the applicability of NNPs to high-dimen-
sional systems. First, the size of feed-forward NNs, i.e. the 
number of layers and nodes per layer, cannot be increased 
arbitrarily. Each new atom in the system introduces three 
additional degrees of freedom, which increases the number 
of nodes required in the input layer. Further, with a growing 
number of input nodes, also the number of nodes in the hidden 
layers needs to be adjusted to properly process the structural 
information. Necessarily, with increasing size, the computa-
tional performance of the NN evaluation decreases. Further, 
the number of weight parameters grows substantially with the 
size of the NN making the determination of the optimum set 
of weights more challenging. Finally, the rapidly increasing 
configuration space, which needs to be covered by the refer-
ence electronic structure calculations, does not allow for an 
arbitrary extension of the system size if its full complexity is 
described by a single NN.

A second problem for any conventional NNP consisting of 
a single NN is that it is only applicable to the system size that 
has been used for its construction, because once the numeri-
cal values of the weights have been determined, the number 
of NN input nodes cannot be changed. If an atom is added 
to the system, the NN weights connecting the input nodes 
representing its degrees of freedom for the first hidden layer 
are not available. If, on the other hand, an atom is removed, 
the numerical values of its input nodes are no longer defined. 
Of course, it is not acceptable to fit a separate NNP for each 
system size, because constructing a large set of potentials to 
study, e.g. different water clusters or metal particles with vari-
ous numbers of atoms, is neither feasible nor desirable.

The most important challenge common to all NNPs is, 
however, the incorporation of the invariance of the potential 
energy of a system with respect to any transformation that does 
not change its structure. This involves the invariance of the 
energy of a molecule with respect to translation and rotation, 

but also the permutation symmetry regarding the interchange 
of chemically equivalent atoms, like the two hydrogen atoms 
in a free water molecule. Obtaining NNPs having these prop-
erties has been a severe challenge. The underlying problem is 
that the NN is just processing numbers describing the posi-
tions of the atoms in the system. If these numbers are not 
invariant with respect to rotation, translation or permutation, 
then the potential energy output of the NN is not invariant. 
A prominent example of an unsuitable set of coordinates are 
Cartesian coordinates, whose absolute values have no physi-
cal meaning since only relative atomic positions are important 
for the potential energy of a system. The main problem for 
obtaining an NNP with permutation symmetry upon exchange 
of like atoms is that the input coordinates of the NN form an 
ordered vector. Since different input coordinates, even if they 
refer to atoms of the same element, are connected to the NN 
by numerically different weight parameters, a permutation of 
any pair of atoms results in a change of the NN output. While 
this problem can be circumvented for small systems by using 
a well-defined order of atoms or by training the NNP using 
a reference set containing all equivalent representations of a 
molecule explicitly, for high-dimensional systems a rigorous 
solution must be found.

As a consequence of all these conceptual difficulties, it 
has been shown by several groups that NNPs are in principle 
a useful tool for constructing high-quality PESs, but appli-
cations aiming to solve real chemical problems, which can-
not be addressed by other methods, have been very rare. In 
this review, we will first demonstrate that by solving these 
conceptual problems NNPs can be used to construct PESs 
of complex high-dimensional systems and, second, that these 
NNPs represent a valuable new method for performing large-
scale simulations with significantly improved accuracy for 
many systems.

Before discussing the high-dimensional NNP method in 
detail, it should be noted that another high-dimensional 
potential employing NNs was suggested by Smith and cow-
orkers in 1999 [99, 100]. In this approach the total energy 
is expressed by an NN of variable size using a set of input 
vectors obtained from a structural decomposition of the 

Table 2. List of NNPs for molecule–surface interactions published to date.

Year Ref. System Reference method

1995 Blank et al [77] CO @ Ni(1 1 1) empirical PES
1995 Blank et al [77] H2 @ Si(1 0 0)-(2 × 1) DFT (LDA)
2004 Lorenz et al [223] H2 @ K(2 × 2)/Pd(1 0 0) DFT (PW91)
2005 Behler et al [123, 224, 225] O2 @ Al(1 1 1) DFT (RPBE)
2006 Lorenz et al [226] H2 @ Pd(1 0 0) empirical PES
2006 Lorenz et al [226] H2 @ (2 × 2)S/Pd(1 0 0) empirical PES
2007 Ludwig and Vlachos [227] H2 @ Pt(1 1 1) empirical PES
2007 Ludwig and Vlachos [227] H2 @ Pt(1 1 1) DFT (PW91)
2008 Behler et al [225] O2 @ Al(1 1 1) DFT (PBE)
2008 Latino et al [228] ethanol @ Au(1 1 1) DFT (B3LYP)
2008 Carbogno et al [229] O2 @ Al(1 1 1) DFT (RPBE)
2009 Manzhos et al [97] N2O @ Cu(1 0 0) DFT
2009 Carbogno et al [230] O2 @ Al(1 1 1) DFT (RPBE)
2010 Latino et al [231] ethanol @ Au(1 1 1) DFT (B3LYP)
2010 Manzhos and Yamashita [232] N2O @ Cu(1 0 0) DFT
2012 Goikoetxea et al [233] O2 @ Ag(1 1 1) DFT (PBE)
2013 Liu et al [234] HCl @ Au(1 1 1) DFT (PW91)

J. Phys.: Condens. Matter 26 (2014) 183001
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Molecular dynamics — tungsten
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TABLE III. (Color online) Summary of the databases for six GAP models, in order of increasing breadth in the types of configurations
they contain, together with the performance of the corresponding potentials with respect to key properties. The color of the cells indicates a
subjective judgment of performance: unacceptable (red), usable (yellow), good (green). The first five properties can be checked against DFT
directly and so we report errors, but calculation of the last two properties are in large systems, so we report the values, converged with system
size. The configurations are collected using Boltzmann sampling; for more details on the databases leading to the models see the Supplemental
Information [41].
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GAP1 :
2000 � primitive unit cell
with varying lattice vectors

24.70 0.623 0.583 2.855 0.1452 0.0008

GAP2 : GAP1 + 60 � 128-atom unit cell 51.05 0.608 0.146 1.414 0.1522 0.0006

GAP3 : GAP2 +
vacancy in: 400 � 53-atom unit cell,
20 � 127-atom unit cell

63.65 0.716 0.142 0.018 0.0941 0.0004

GAP4 : GAP3 +

(100), (110), (111), (112) surfaces
180 � 12-atom unit cell

(110), (112) γ surfaces
6183 � 12-atom unit cell

86.99 0.581 0.138 0.005 0.0001 0.0002 –0.960 0.108

GAP5 : GAP4 +
vacancy in: (110), (112) γ surface
750 � 47-atom unit cell

93.86 0.865 0.126 0.011 0.0001 0.0002 –0.774 0.154

GAP6 : GAP5 +
1
2 111 dislocation quadrupole
100 � 135-atom unit cell

93.33 0.748 0.129 0.015 0.0001 0.0001 –0.794 0.112

aTime on a single CPU core of Intel Xeon E5-2670 2.6 GHz.
brms error.
cFormation energy error.
drms error of Nye tensor over the 12 atoms nearest the dislocation core; cf. Fig 4.

We now investigate the properties of the 1
2 ⟨111⟩ screw

dislocation further by calculating the Peierls barrier using a
transition-state-searching implementation of the string method
[45,46]. Three different initial transition paths, shown in

TABLE IV. Number of representative atomic environments in
each database of the six GAP models. The rows represent the
successive GAP models and the columns represent the configuration
types in the databases, grouped according to which GAP model
first incorporated them. The allocations shown are based on k-
means clustering. The rightmost column shows the total number of
representative atoms in each GAP model (M).

Database Total

1 2 3 4 5 6 M

GAP1 2000 2000
GAP2 814 3186 4000
GAP3 366 1378 4256 6000
GAP4 187 617 1890 6306 9000
GAP5 158 492 1604 5331 2415 10000
GAP6 140 450 1500 4874 2211 825 10000

Fig. 3, are used to explore the existence of the metastable
state corresponding to a “hard” core structure [15,47–49].
We find that the hard core is not even locally stable in
tungsten—starting geometry optimization from there results
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FIG. 2. (Color online) Phonon spectrum of bcc tungsten calcu-
lated using GAP and FS potentials, and some reference DFT values.
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Phonon spectrum

• tungsten in bcc crystal phase
• Gaussian approximation potential
• DFT (PBE, plane waves,

pseudopotentials) reference
• screw dislocation

ACCURACY AND TRANSFERABILITY OF GAUSSIAN . . . PHYSICAL REVIEW B 90, 104108 (2014)

“soft” lattice site

“hard” lattice site

Path A

Path B

Path C

FIG. 3. (Color online) Representation of the three different initial
transition paths for the Peierls barrier calculation. Path A corresponds
to the linear interpolation directly from the initial to the final state,
whereas paths B and C are the two distinct linear interpolations
that include a potential metastable state (corresponding to the hard
structure of the dislocation core) at reaction coordinate r = 0.5.

in the dislocation line migrating to a neighboring lattice
site, corresponding to the “soft” core configuration. All three
initial transition paths converge to the same minimum energy
pathway (MEP), shown in Fig. 4, with no hard core transition
state. For large enough systems, the MEP is independent
of the boundary conditions: the “quadrupole” calculations
contained two oppositely directed dislocations in periodic
boundary conditions, while the “cylinder” configurations had a
single dislocation with fixed far-field boundary conditions. For
comparison we also plot the MEP of the Finnis-Sinclair model,
and show the corresponding core structures using Nye tensor
maps [50,51]. For the smallest periodic 135-atom model, we
computed the energies at five points along the MEP using
DFT to verify that the GAP model is indeed accurate for these
configurations.
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FIG. 4. (Color online) Top: The structure of the screw dislocation
along the minimum energy path as it glides. Bottom: Peierls barrier
evaluated using GAP and FS potentials, along with single-point
checks with DFT in the 135-atom quadrupole arrangement.
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FIG. 5. (Color online) Dislocation-vacancy binding energy eval-
uated using GAP and FS potentials. The top panels show the
interpolated binding energy using a heat map; the graphs below are
slices of the same along the dotted lines shown in the top panels.

Due to the intrinsic smoothness of the potential, it can be
expected to perform well for configurations which contain
multiple defect structures as long as the local deformation
around each defect with respect to the corresponding configu-
rations in the database is small. So we finally turn to an example
of the kinds of atomistic properties that are needed to make
the connection to materials modeling on higher length scales,
but are inaccessible to direct DFT calculations due to system
size limitations imposed by the associated computational cost.
Figure 5 shows the energy of a vacancy in the vicinity of a
screw dislocation calculated in a system of over 100 000 atoms
using cylindrical fixed boundary conditions 230 Å away from
the core and with periodic boundary conditions applied along
the dislocation line with a periodicity corresponding to three
Burgers vectors. The Finnis-Sinclair potential underestimates
this interaction by a factor of 2.

Although the potential developed in this work does not
yet constitute a comprehensive description of tungsten under
all conditions, we have shown that the strategy of building
a database of representative small unit cell configurations
is viable, and will be continued with the incorporation of
other crystal phases, edge dislocations, interstitials, etc. In
addition to developing ever more comprehensive databases and
computing specific atomic scale properties with first-principles
accuracy on which higher-length-scale models can be built, our
long-term goal is to discover whether, in the context of a given
material, an all-encompassing database could be assembled
that contains a sufficient variety of neighbor environments to
be valid for any configuration encountered under conditions
of physically realistic temperatures and pressures. If that turns
out to be possible, it will herald a truly new era of precision
for atomistic simulations in materials science.
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Molecular dynamics — crack propagation
• crack propagation in silicon
• learning on the fly (model is

updated when leaving domain)
• form of active learning
• k-step predictor/corrector

The scheme is based on direct ML prediction of atomic
forces, rather than atomic energies or PESs. This ensures
high force accuracy, e.g., allowing systematic convergence
of trajectories to their FPMD limit by enhancing the
QM fitting frequency, and avoiding any “blurring” effect
connected with deriving forces from an intermediate PES
representation. The forces on atoms are predicted by
Bayesian inference using standard GP regression [16,23].
The QM database is progressively built during the MD run
and, at the same time, queried to predict forces for those
time steps where no QM calculation is made, using an
n-time-step predictor-corrector algorithm [19,20]. As in the
previous scheme, (free) energy barriers can be estimated by
accurate thermodynamic integration [24]. Since the ongoing
MD simulation continuously improves the database, as long
as the system remains within the same phase space region,
the accuracy of the predicted forces improves (Fig. 2).
Alternatively, we may fix the target force accuracy so that
the frequency of necessary QM calculations progressively
decreases and n can be increased (Fig. 3).
To construct the covariance matrix required by the

standard GP regression procedure [25], we need a
symmetry-efficient representation to describe atomic con-
figurations, and a function measuring the distance dmn ¼
dðxm; xnÞ between any two such configurations xm and xn
suitable for quantifying their “similarity for force prediction”
[28]. As in PES-learning ML schemes, an efficient repre-
sentation of an atomic environment x should be invariant
under transformations to physically equivalent systems such
as rotations and permutations of atoms of the same chemical
species [29]. A special difficulty associated with a force-
learning ML scheme is that the Cartesian force components
depend on the choice of reference frame, unlike the (physi-
cally scalar, however defined) atomic energies, so that the
best force components to be learned from a database
configuration are only known after a rotation to its optimal
alignment with the target configuration. As will be shown
below, an efficient way to deal with this issue is to define a
rotationally invariant “internal” representation for atomic

configurations and force vectors [30]. After carrying out ML
in this representation, we transform the predicted force back
into theCartesian representation, so that they have the correct
orientation for MD trajectory integration.
For each atom, k independent internal vectors (IVs) Vi

for i ¼ 1;…; k can be uniquely defined by the relative
positions rq of its neighbors, which makes them invariant
under translations and any permutation of neighbors of the
same chemical species. A possible choice is

Vi ¼
XNneighb

q¼1

r̂qexp
!
−
"

rq
rcutðiÞ

#
pðiÞ$

; ð1Þ

where each of these basis vectors is defined by different
values of the parameters p and rcut, chosen within a suitable
range reflecting the decay rate or interaction range of forces
in the system. This vector representation ensures that force
components are null where this follows from symmetry, and
that closer neighbors contribute more than far away ones.
Crucially, to improve the prediction accuracy, this set can be
expanded to include any additional vector presumed to carry
useful information on target QM forces. These are typically
force vectors obtained from well-established classical force
fields or from QM models less computationally expensive
than the current reference Hamiltonian (e.g., an empirical
tight bindingmodel if themainQMmodel is DFT based, see
inset of Fig. 2). This offers a way to include precious

FIG. 2 (color online). Accuracy of forces predicted by the ML
scheme as a function of database size. Teaching points are
sampled from DFTB MD of silicon at 1000 K (blue squares)
and at 2500 K (green diamonds) at 20 fs intervals. Inset: a similar
test, using DFT forces sampled from MD at 1000 K as the target.
Accuracy improves significantly when the set of IVs is aug-
mented by classical or TB force vectors.

(a)

(b)

(c)

FIG. 3 (color online). (a) Average QM calling rate of low- and
high-temperature MD “learning” simulations in bulk crystalline
silicon. Red circles pinpoint QM calls, getting remarkably sparse
after the initial learning phase. (b) Temperature profile of a MD
simulation alternating between 300 and 800 K. (c) Instantaneous
QM call frequency (left vertical axis, red stars) and total call
count within each 800 K cycle (right axis, blue histograms) of
the simulation of panel (b).
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Density functional theory

Learning the map from electron density to kinetic energy

• orbital-free DFT
• 1D toy system
• DFT/LDA as reference

• error decays to zero
• self-consistent densities
• bond breaking and formation

H2 potential H2 binding curve H2 forces
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Electron densities — projected gradients

• kinetic energy of electron densities
• Gaussian process regression
• orbital-free DFT, 1D toy system
• error decays to zero
• projected gradients for self-consist-

ent densities (“non-linear gradient
denoising”)

nj

g[n] = 0

Gradient descent

ñ MN
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Projection step

Correction stepñ�
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Transition state theory
• characterization of dividing surfaces
• support vector machine for classification
• alternate between learning and sampling
• no prior information required
• iteratively refined by biased sampling along dividing surface
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y TS1

TS2

x*
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Relaxation in glassy liquids
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A structural approach to relaxation in
glassy liquids
S. S. Schoenholz1*†, E. D. Cubuk2†, D. M. Sussman1, E. Kaxiras2 and A. J. Liu1*
In contrastwith crystallization, there isnonoticeable structural
change at the glass transition. Characteristic features of
glassy dynamics that appear below an onset temperature,
T0 (refs 1–3), are qualitatively captured by mean field
theory4–6, which assumes uniform local structure. Studies of
more realistic systems have found only weak correlations
between structure and dynamics7–11. This raises the question:
is structure important to glassy dynamics in three dimensions?
We answer this question a�rmatively, using machine learning
to identify a new field, ‘softness’ which characterizes local
structure and is strongly correlated with dynamics. We find
that the onset of glassy dynamics at T0 corresponds to the
onset of correlations between softness (that is, structure) and
dynamics.Moreover, we construct a simplemodel of relaxation
that agrees well with our simulation results, showing that a
theory of the evolution of softness in time would constitute a
theory of glassy dynamics.

To look for correlations between structure and dynamics, one
typically tries to find a quantity that encapsulates the important
physics, such as free volume, bond orientational order, locally
preferred structure, and so on. In contrast to this approach, we use
a machine learning method designed to find a structural quantity
that is strongly correlated with dynamics. Earlier, we applied this
approach to the simpler problem of classifying particles as being
‘soft’ if they are likely to rearrange or ‘hard’ otherwise12. We describe
a particle’s local structural environment with M = 166 ‘structure
functions’13 that respect the overall isotropic symmetry of the system
and include radial density and bond angle information. We then
define an M-dimensional space, RM , with an orthogonal axis for
each structure function. The local structural environment of a
particle i is thus encoded as a point in M-dimensional space.
We assemble a ‘training set’ from molecular dynamics simulations
consisting of equal numbers of ‘soft’ particles that are about to
rearrange and ‘hard’ particles that have not rearranged in a time
⌧↵ preceding their structural characterization, and find the best
hyperplane separating the two groups using the support vector
machines (SVM) method14,15. Finally, we define the softness, Si, of
particle i as the shortest distance between its position in RM and the
hyperplane, where Si >0 if i lies on the soft side of the hyperplane
and Si <0 otherwise.

We study a 10,000-particle 80:20 bidisperse Kob–Andersen
Lennard-Jones glass16 in three dimensions at di�erent densities
⇢ and temperatures T above its dynamical glass transition
temperature. All results here are for particles of species A only.
However, the results are qualitatively the same for particles of both
species. At each density we select a training set of 6,000 particles,
taken from amolecular dynamics trajectory at the lowest T studied,
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Figure 1 | The characteristics of the softness field. a, A snapshot of the
system at T =0.47 and ⇢ = 1.20 with particles coloured according to their
softness from red (soft) to blue (hard). b, The distribution of softness of all
particles in the system (black) and of those particles that are about to
rearrange (red). 90% of the particles that are about to rearrange have
S>0 (shaded region). None of the data included in this plot were in the
training set.

to construct a hyperplane in RM . We then use this hyperplane to
calculate Si(t) for each particle i at each time t during an interval of
30,000⌧ at each ⇢ and T .

We can deduce the most important structural features
contributing to softness either by training on fewer structure
functions or by examining the projection of the hyperplane normal
onto each orthogonal structure function axis. Both analyses yield
a consistent picture (see Supplementary Information): the most
important features are the density of neighbours at the first peaks
of the radial distribution functions gAA(r) and gAB(r); these two
features alone give 77% prediction accuracy for rearrangements.
Particles with more neighbours at the first peaks of g (r) have
a lower softness, and are thus more stable. These results are
reminiscent of the cage picture, in which an increase of population
in the first-neighbour shell suppresses rearrangements, or the
free-volume picture, in which particles whose surroundings are
closely packed are more stable than those with more loosely packed
neighbourhoods17. Overall, soft particles typically have a structure
that is more similar to a higher-temperature liquid, where there are
more rearrangements, whereas hard particles have a structure that
is closer to a lower-temperature liquid18.

Figure 1a is a snapshot with particles coloured according to their
softness. Evidently, S has strong spatial correlations. Figure 1b shows
the distribution of softness, P(S), and the distribution of softness
for particles just before they go through a rearrangement, P(S |R).
We see that 90% of the particles that undergo rearrangements
have S> 0. We have also tested other sets of structure functions
(see Supplementary Information) and found nearly identical
accuracy. Softness is therefore a highly accurate predictor of
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and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. †These authors contributed equally to this
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• identify subtle structural changes (“softness”) in glassy dynamics
• softness correlates to probability of rearrangement in near future
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