Kernel-based Regression

Matthias Rupp

Fritz Haber Institute of the Max Planck Society, Berlin, Germany

2017 NYU Shanghai Summer School on Machine Learning in the Molecular Sciences June 12–16, Shanghai, China

Outline

- 1. Kernel learning kernel trick, kernels
- 2. Kernel ridge regression Gaussian process regression
- 3. Model building validation, hyperparameters, overfitting

The kernel trick

Idea:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm to use only inner products

Input space ${\mathcal X}$

The kernel trick

Idea:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm to use only inner products

Schölkopf, Smola: Learning with Kernels, 2002; Hofmann et al.: Ann. Stat. 36, 1171, 2008.

Kernel functions

Kernels correspond to inner products.

If $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is symmetric positive semi-definite, then $k(x,z) = \langle \phi(x), \phi(z) \rangle$ for some $\phi: \mathcal{X} \to \mathcal{H}$.

Inner products encode information about lengths and angles:

$$||x-z||^2 = \langle x, x \rangle - 2 \langle x, z \rangle + \langle z, z \rangle, \qquad \cos \theta = \frac{\langle x, z \rangle}{||x|| \, ||z||}.$$

- well characterized function class
- closure properties
- $||\mathbf{x} \mathbf{z}||_2$ access data only by $\mathbf{K}_{ij} = k(x_i, x_j)$
 - ullet ${\cal X}$ can be any non-empty set

Example: quadratic kernel

 $\rightarrow \, \mathsf{blackboard}$

Examples of kernel functions

Linear kernel $k(x, z) = \langle x, z \rangle$

• recovers original linear model

Examples of kernel functions

Gaussian kernel
$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$

- length scale σ
- infinite dimensional feature space
- universal local approximator

Examples of kernel functions

Laplacian kernel
$$k(x, z) = \exp\left(-\frac{\|x - z\|_1}{\sigma}\right)$$

ullet length scale σ

Example of a graph kernel

Iterative (graph) similarity optimal assignment kernel (ISOAK)

- $|V| \times |V'|$ matrix X of pairwise vertex similarities
- "two vertices are similar if their neighbours are similar"
- recursive definition; iterative computation
- find assignment ho:V o V' such that $\sum_{i=1}^{|V|}X_{i,
 ho(i)}$ is maximal

$$10^2 X_{ij}$$
 1 2 3 4 5 6 7
1 98 50 00 00 00 00 50
2 50 98 11 34 16 17 89
3 00 11 96 14 68 78 13
4 00 34 14 91 13 20 38
5 00 24 67 17 81 77 20

Pairwise atom similarities

Glycine

Serine

Rupp, Proschak, Schneider: J. Chem. Inf. Model., 2280, 2007

Example of clustering with a graph kernel

Linear PCA with CATS2D

Kernel PCA with ISOAK

- tyrosines,
 TZDs,
 indoles,
 oxadiazoles,
 fatty acids,
- tertiary amides, tyrosines N, TZD-fatty acid hybrids

From linear regression to kernel ridge regression

- linear regression → blackboard problem, model form, optimization problem, solution
- ridge regression → blackboard correlated inputs, overfitting, "ridge" penalization, meaning
- kernel ridge regression → blackboard kernel trick, solution

Comparison of linear and kernel ridge regression

Ridge regression

Minimizing

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \sum_{i=1}^n (f(\boldsymbol{x_i}) - y_i)^2 + \lambda ||\boldsymbol{\beta}||^2$$

yields

$$\boldsymbol{\beta} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

for models

$$f(\mathbf{x}) = \sum_{i=1}^{a} \beta_i \mathbf{x}_i$$

Kernel ridge regression

Minimizing

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \sum_{i=1}^n (f(\boldsymbol{x_i}) - y_i)^2 + \lambda ||f||_{\mathcal{H}}^2$$

yields

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}.$$

for models

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x})$$

Representer theorem

Kernel models have form

$$f(\mathbf{z}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{z})$$

due to the representer theorem:

Any function minimizing a regularized risk functional

$$\ell\left(\left(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})\right)_{i=1}^{n}\right) + g(\|f\|)$$

admits to above representation.

Intuition:

- model lives in space spanned by training data
- weighted sum of basis functions

Schölkopf, Herbrich & Smola, COLT 2001

The basis function picture

Vu et al, Int J Quant Chem 115: 1115, 2015

How regularization helps against overfitting

Effect of regularization

Rupp, PhD thesis, 2009; Vu et al, Int. J. Quant. Chem., 1115, 2015

Overfitting and underfitting in the limit

Centering in kernel feature space

Centering \boldsymbol{X} and \boldsymbol{y} is equivalent to having a bias term b.

For kernel models, center in kernel feature space:

$$\tilde{k}(\mathbf{x}, \mathbf{z}) = \left\langle \phi(\mathbf{x}) - \frac{1}{n} \sum_{i=1}^{n} \phi(\mathbf{x}_{i}), \phi(\mathbf{z}) - \frac{1}{n} \sum_{i=1}^{n} \phi(\mathbf{x}_{i}) \right\rangle$$

$$\Rightarrow \tilde{\mathbf{K}} = \left(\mathbf{I} - \frac{1}{n}\mathbf{1}\right) \mathbf{K} \left(\mathbf{I} - \frac{1}{n}\mathbf{1}\right)$$

Some kernels like Gaussian and Laplacian kernels do not need centering Poggio *et al.*, Tech. Rep., 2001

Gaussian process regression

- generalization of multivariate normal distribution to functions
- determined by mean function and covariance function = kernel
- conditioning of prior on training data yields posterior distribution
- variance as confidence estimates for predictions

Predictive variance

"It is not the estimate [...] that matters so much as the degree of confidence with the opinion"

Taleb, Random House, 2004

Works for some datasets, fails for others

Other kernel regression algorithms

- (kernel) support vector machines (SVM) Steinwart, Christmann, Springer, 2008
- kernel partial least squares (PLS)
 Rosipal, Trejo: J. Mach. Learn. Res., 97, 2001
- kernel ridge regression (KRR)
 Hastie, Tibshirani, Friedman, Springer, 2009
- Gaussian process regression (GPR)
 Rasmussen, Williams, MIT Press, 2006

Summary

- the kernel trick: implicit transformation to high-dimensional spaces
- kernel ridge regression: regularized regression with kernels
- validation: avoid over-fitting by following the golden rule