Kernel－based Regression

Matthias Rupp

Fritz Haber Institute of the Max Planck Society，Berlin，Germany

2017 NYU Shanghai Summer School on
Machine Learning in the Molecular Sciences
June 12－16，Shanghai，China

Outline

1. Kernel learning
kernel trick, kernels
2. Kernel ridge regression Gaussian process regression
3. Model building validation, hyperparameters, overfitting

The kernel trick

Idea:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm to use only inner products

```
    -000000000000000000000000000000, x
-2\pi
    Input space \mathcal{X}
```


The kernel trick

Idea:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm to use only inner products

Input space \mathcal{X}
$\xrightarrow{\phi}$
Feature space \mathcal{H}

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(x, z)=\langle\phi(x), \phi(z)\rangle
$$

Kernel functions

Kernels correspond to inner products.
If $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is symmetric positive semi-definite, then $k(x, z)=\langle\phi(x), \phi(z)\rangle$ for some $\phi: \mathcal{X} \rightarrow \mathcal{H}$.

Inner products encode information about lengths and angles: $\|x-z\|^{2}=\langle x, x\rangle-2\langle x, z\rangle+\langle z, z\rangle, \quad \cos \theta=\frac{\langle x, z\rangle}{\|x\|\|z\|}$.

- well characterized function class
- closure properties
- access data only by $\boldsymbol{K}_{i j}=k\left(x_{i}, x_{j}\right)$
- \mathcal{X} can be any non-empty set

Example: quadratic kernel

\rightarrow blackboard

Examples of kernel functions

Linear kernel $k(\boldsymbol{x}, \boldsymbol{z})=\langle\boldsymbol{x}, \boldsymbol{z}\rangle$

- recovers original linear model

Examples of kernel functions

Gaussian kernel $k(\boldsymbol{x}, \boldsymbol{z})=\exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{z}\|^{2}}{2 \sigma^{2}}\right)$

- length scale σ
- infinite dimensional feature space
- universal local approximator

Examples of kernel functions

Laplacian kernel $k(\boldsymbol{x}, \boldsymbol{z})=\exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{z}\|_{1}}{\sigma}\right)$

- length scale σ

Example of a graph kernel

Iterative (graph) similarity optimal assignment kernel (ISOAK)

- $|V| \times\left|V^{\prime}\right|$ matrix X of pairwise vertex similarities
- „two vertices are similar if their neighbours are similar"
- recursive definition; iterative computation
- find assignment $\rho: V \rightarrow V^{\prime}$ such that $\sum_{i=1}^{|V|} X_{i, \rho(i)}$ is maximal

| $10^{2} X_{i j}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 98 | 50 | 00 | 00 | 00 | 00 | 50 |
| 2 | 50 | 98 | 11 | 34 | 16 | 17 | 89 |
| 3 | 00 | 11 | 96 | 14 | 68 | 78 | 13 |
| 4 | 00 | 34 | 14 | 91 | 13 | 20 | 38 |
| 5 | 00 | 24 | 67 | 17 | 81 | 77 | 20 |

Pairwise atom similarities

Glycine Serine

Example of clustering with a graph kernel

Kernel PCA with ISOAK

Linear PCA with CATS2D

From linear regression to kernel ridge regression

- linear regression \rightarrow blackboard problem, model form, optimization problem, solution
- ridge regression \rightarrow blackboard correlated inputs, overfitting, "ridge" penalization, meaning
- kernel ridge regression \rightarrow blackboard
kernel trick, solution

Comparison of linear and kernel ridge regression

Ridge regression

$$
\begin{gathered}
\text { Minimizing } \\
\min _{\boldsymbol{\beta} \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-y_{i}\right)^{2}+\lambda\|\boldsymbol{\beta}\|^{2}
\end{gathered}
$$

yields

$$
\boldsymbol{\beta}=\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

for models

$$
f(\boldsymbol{x})=\sum_{i=1}^{d} \beta_{i} \boldsymbol{x}_{i}
$$

Kernel ridge regression

Minimizing
$\min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}$
yields

$$
\boldsymbol{\alpha}=(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y} .
$$

for models

$$
f(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}\right)
$$

Representer theorem

Kernel models have form

$$
f(\boldsymbol{z})=\sum_{i=1}^{n} \alpha_{i} k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{z}\right)
$$

due to the representer theorem:
Any function minimizing a regularized risk functional

$$
\ell\left(\left(\boldsymbol{x}_{\boldsymbol{i}}, y_{i}, f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right)_{i=1}^{n}\right)+g(\|f\|)
$$

admits to above representation.

Intuition:

- model lives in space spanned by training data
- weighted sum of basis functions

The basis function picture

How regularization helps against overfitting

Effect of regularization

Underfitting

Fitting

Overfitting

Rupp, PhD thesis, 2009; Vu et al, Int. J. Quant. Chem., 1115, 2015

Overfitting and underfitting in the limit

Centering in kernel feature space

Centering \boldsymbol{X} and \boldsymbol{y} is equivalent to having a bias term b.
For kernel models, center in kernel feature space:

$$
\begin{array}{r}
\tilde{k}(\boldsymbol{x}, \boldsymbol{z})=\left\langle\phi(\boldsymbol{x})-\frac{1}{n} \sum_{i=1}^{n} \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right), \phi(\boldsymbol{z})-\frac{1}{n} \sum_{i=1}^{n} \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right\rangle \\
\Rightarrow \tilde{\boldsymbol{K}}=\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1}\right) \boldsymbol{K}\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1}\right)
\end{array}
$$

Some kernels like Gaussian and Laplacian kernels do not need centering Poggio et al., Tech. Rep., 2001

Gaussian process regression

- generalization of multivariate normal distribution to functions
- determined by mean function and covariance function = kernel
- conditioning of prior on training data yields posterior distribution
- variance as confidence estimates for predictions

Predictive variance

"It is not the estimate [...] that matters so much as the degree of confidence with the opinion"

Taleb, Random House, 2004
Works for some datasets, fails for others

Snyder et al, Phys Rev Lett 108, 2012

unpublished

Other kernel regression algorithms

- (kernel) support vector machines (SVM)

Steinwart, Christmann, Springer, 2008

- kernel partial least squares (PLS)

Rosipal, Trejo: J. Mach. Learn. Res., 97, 2001

- kernel ridge regression (KRR)

Hastie, Tibshirani, Friedman, Springer, 2009

- Gaussian process regression (GPR)

Rasmussen, Williams, MIT Press, 2006

Summary

- the kernel trick: implicit transformation to high-dimensional spaces
- kernel ridge regression: regularized regression with kernels
- validation: avoid over-fitting by following the golden rule

