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Outline

1. Introduction to machine learning
overview, basic concepts, some applications

2. Learning with kernels
kernel ridge regression, Gaussian process regression

3. Property prediction

applications, examples, representation

4. Practical session
hands-on exercises using gmmlpack



Machine learning

Machine learning (ML) studies algorithms whose performance improves
with data (“learning from experience”). Mitchell, McGraw Hill, 1997

Data X : —  Model f

e widely applied, many problem types and algorithms

e systematic identification of regularity in data for prediction & analysis
e interpolation in high-dimensional spaces

e inductive, data-driven; empirical in a principled way

e connections to statistics, mathematics, computer science, physics, ...
example: information theory



Literature

Conferences:

e Annual Conference on Neural Information Processing Systems (NIPS)
e International Conference on Machine Learning (ICML)

e Conference on Learning Theory (COLT)

Textbooks:

e Vapnik: Nature of Statistical Learning Theory, Springer, 2001

e Duda, Hart, Stork: Pattern Classification, Wiley, 2001

e Bishop: Pattern Recognition and Machine Learning, Springer, 2006

e Hastie, Tibshirani, Friedman: Elements of Statistical Learning, Springer, 2003

https://nips.cc, https://icml.cc, https://www.learningtheory.org


https://nips.cc
https://icml.cc
https://www.learningtheory.org

Examples of machine learning applications

brain-computer interfaces flipper; dictation
natural language processing Google translate
recommender systems, advertising burglar example

fraud detection, network security

robotics, autonomous vehicles

image processing, computer vision paintings
games
oil industry / geology Gaussian processes

molecular and materials sciences, bioinformatics



Types of problems

Unsupervised learning: Data do not have labels
Given {x;}lr.’:l, find structure

e dimensionality reduction Burges, now Publishers, 2010

Supervised learning: Data have labels
Given {(x,-,y,-)}?zl, predict ¥ for new X
e novelty detection

e classification

® regression

Semi-supervised learning: Some data have labels

Given {(x,-,y,-)}?z1 and {x,-};ll, m > n, predict y for new X



Types of problems

Matrix completion:
Given a partially occupied matrix, find missing elements
Example: ligands versus protein receptors

Active learning: Algorithm chooses data to label
Choose n data {x;};_, to predict j for new %

Reinforcement learning: Algorithm acts based on rewards
Given a state space, algorithm learns to maximize rewards for its actions

Online learning: Algorithm predicts data as they arrive
Stream of data to predict, minimize overall error

Covariate shift: Algorithm adapts to changing data
Predicted data come from a different distribution than training data



Algorithms

artificial neural networks
random forests

support vector machines
kernel ridge regression
Gaussian processes

principal component analysis
symbolic regression

many others. ..

— Prof. Tuckerman (afternoon)
— Prof. Zhang (tomorrow)
Cristianini & Shawe-Taylor, 2000
— second lecture

— second lecture

Jolliffe, 2004

Schmidt, Lipson, 2009



Artificial neural networks

Md{icn layers
———

output layer

input layer

e parametric model

i e universal function approximator
f(xij) = h( E Wi—l,kf(Xi—Lk)) L L
=1 e training via non-convex optimization

e — Prof. Tuckerman



Support vector machines

X2

linear separable problem linear inseparable problem

maximal margin plane bisects (reduced) convex hull closest points
Ivanciuc: J. Chem. Inf. Model. 40, 1412, 2000; Bennett, Campbell: SIGKDD Explor. 2, 1, 2000



Symbolic regression

e stochastic search in the space o

e fast, interpretable models

[rs(A) = 7, (B)| exp(=rs(A)) [A]

f analytic functions

AE,, = E(AB,g) - E(AB,;)

7B, AE,, >02¢V

ZB,0.1eV AE, <02eV
ZB.0.05eV <AE,,<0.1 eV
~0.05 eV < AE, < 0.05 eV
RS.-0.1eV <AE, <~ 0.05eV
RS,—02eV <AE, < 0.1eV
RS, AE, <~ 02eV
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Ghiringhelli et al, Phys. Rev. Lett., 2015



Learning theory

A
prediction error =
C—¢€ B . .
\\ a approximation error a
0 D + estimation error e
+ optimization error o
7_"

F = model class, A = true model, B = best model in class, C = best
identifiable model (data), D = best identifiable model (optimization)

Changes in size of F < a vs. e < bias-variance trade-off

Bottou & Bousquet, NIPS 2007



Example: predicting atomization energies

E®t[10%kcal/mol]

Rupp

e 7165 small organic molecules (H,C,N,0,S; 1-7 non-H atoms)
e DFT PBEO atomization energies
e today, errors are ~ 0.5 kcal/mol for this dataset
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Design: the inverse problem

Find a molecule or material with given properties

Example:

Maximize binding constant pK; to PPAR~,
with aqueous solubility log S < 0, at T = 37°C and pH = 7.2.

Assumption: Determining properties is possible, but expensive (“oracle”)

Direct approach Inverse approach

screen compound collections design compounds
map structure to property map property to structures

Figure: Franceschetti, Zunger: Nature, 60, 1999



Confidence estimates

“It is not the estimate [...] that matters so much
as the degree of confidence with the opinion”

Taleb, Random House, 2004

Known in cheminformatics as domain of applicability:
How to determine whether new data x are in the interpolation region?

Quantitatively: How far away is x from the training data?
e naive approaches can help as filters variable ranges — blackboard
e distance alone is insufficient in high-dimensional spaces — blackboard

e with the usual i.i.d. assumption in ML, this problem does not exist

Sushko et al.: J. Chem. Inf. Model., 2094, 2010; Sushko et al.: J. Chemometr., 202, 2010



Tendencies in ML for experimental versus computed data

experimental computed

o fewer data e more data

e strong noise ® no noise

e “integrated” properties e dependence on atom coordinates
descriptors unique representations

e enrichment in screening e fast and accurate predictions

e limited by synthesis e limited by approximations

e cheminformatics e interpolation of ab initio data
quantitative structure-activity/ quantum mechanics / machine
property relationships learning models

Selassie, Verma; in: Abraham, Rotella (eds.), Burger's Med. Chem., 7th ed, vol. 1, Wiley, 2010



Nomenclature

The words descriptor and fingerprint originate from cheminformatics.

Descriptor: (“descriptive parameter”)
Any numerical encoding of a (structural) property of a molecule

“The molecular descriptor is the final result of a [.. ]
mathematical procedure..."” (Todeschini & Consonni, Wiley, 2009)

Often a vector of heterogeneous properties, selected ad hoc
Fingerprint: (subclass of descriptors)

Fixed-length (bit) pattern characterising a molecule

Usually homogeneous and topology-based (substructure fingerprints)
Representation: (subclass of descriptors)

Fulfills theoretical requirements for accurate predictions

Introduced to distinguish from ad hoc descriptors



Descriptors

e computable properties in vector form; graph kernels
e used for experimental properties in cheminformatics

e use chemical abstractions, typically not unique and discontinuous
= best for “integrated” properties

1-pentyl acetate

@ Bonds in longest chain: 7
Rotatable bonds: 4

B Negative partial charge
surface fraction: 0.13
Hydrogen bond acceptors: 1

Figure: Michael Schmuker

Todeschini, Consonni: Handbook of Molecular Descriptors, Wiley, 2009;
Rupp, Schneider, Schneider: J. Comput. Chem., 108, 2008.



Representations

e numerical encoding of atomistic system for accurate interpolation

e together with kernel, defines space / basis functions

Requirements
e invariant: against transformations preserving the property
in particular translation, rotation, homonuclear permutations

e unique: different in property = different in representation
allows reconstruction of system

e smooth: continuous, ideally differentiable
works together with ML; needed for forces

e general: encode any system, including molecules and crystals
e fast: cheaper to compute than reference method

o efficient: supports learning by requiring few reference data

Huo, Rupp: arXiv 1704.06439, 2017; — Profs. von Lilienfeld, Tuckerman



Sources of data

experimental data
Literature

Databases:

e PubChem (pubchem.ncbi.nlm.

nih.gov, >90 M compounds)

e Online Chemical Database
(ochem.eu, >1.3 M records)

e Springer Materials

e Cambridge Crystallographic
Database

computed data
Literature

Databases:

e Materials Project
(materialsproject.org)

o Novel Materials Discovery
(nomad-coe.eu)

e Open Quantum Materials
Database

e AFLOWLIib


pubchem.ncbi.nlm.
nih.gov
ochem.eu
materialsproject.org
nomad-coe.eu

Summary

e machine learning finds regularity in data for analysis or prediction,
improving with more data

e there are many problem types and algorithms

e it can predict experimental and computational outcomes



