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Outline

1. Introduction to machine learning
overview, basic concepts, some applications

2. Learning with kernels
kernel ridge regression, Gaussian process regression

3. Property prediction
applications, examples, representation

4. Practical session
hands-on exercises using qmmlpack
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Machine learning

Machine learning (ML) studies algorithms whose performance improves
with data (“learning from experience”). Mitchell, McGraw Hill, 1997

Data X →

.

Black box ML

Data: {( 1, y1), . . . , ( m, ym)}
↓

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

algorithm

↓

Hypothesis: f̂ : "→ y

2/53...

2/53

→ Model f̂

• widely applied, many problem types and algorithms
• systematic identification of regularity in data for prediction & analysis
• interpolation in high-dimensional spaces
• inductive, data-driven; empirical in a principled way
• connections to statistics, mathematics, computer science, physics, . . .

example: information theory
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Literature

Conferences:

• Annual Conference on Neural Information Processing Systems (NIPS)
• International Conference on Machine Learning (ICML)
• Conference on Learning Theory (COLT)

Textbooks:
• Vapnik: Nature of Statistical Learning Theory, Springer, 2001
• Duda, Hart, Stork: Pattern Classification, Wiley, 2001
• Bishop: Pattern Recognition and Machine Learning, Springer, 2006
• Hastie, Tibshirani, Friedman: Elements of Statistical Learning, Springer, 2003
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Examples of machine learning applications

• brain-computer interfaces flipper; dictation
• natural language processing Google translate
• recommender systems, advertising burglar example
• fraud detection, network security
• robotics, autonomous vehicles
• image processing, computer vision paintings
• games
• oil industry / geology Gaussian processes
• . . .

molecular and materials sciences, bioinformatics
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Types of problems

Unsupervised learning: Data do not have labels
Given

{
xi
}n

i=1, find structure

• dimensionality reduction Burges, now Publishers, 2010

Supervised learning: Data have labels
Given

{
(xi , yi )

}n
i=1, predict ỹ for new x̃

• novelty detection
• classification
• regression

Semi-supervised learning: Some data have labels
Given

{
(xi , yi )

}n
i=1 and

{
xi
}m

i=1, m� n, predict ỹ for new x̃
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Types of problems

Matrix completion:
Given a partially occupied matrix, find missing elements
Example: ligands versus protein receptors

Active learning: Algorithm chooses data to label
Choose n data

{
xi
}n

i=1 to predict ỹ for new x̃

Reinforcement learning: Algorithm acts based on rewards
Given a state space, algorithm learns to maximize rewards for its actions

Online learning: Algorithm predicts data as they arrive
Stream of data to predict, minimize overall error

Covariate shift: Algorithm adapts to changing data
Predicted data come from a different distribution than training data
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Algorithms

• artificial neural networks → Prof. Tuckerman (afternoon)

• random forests → Prof. Zhang (tomorrow)

• support vector machines Cristianini & Shawe-Taylor, 2000

• kernel ridge regression → second lecture
• Gaussian processes → second lecture
• principal component analysis Jolliffe, 2004

• symbolic regression Schmidt, Lipson, 2009

• many others. . .
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Artificial neural networks

f (xi ,j) = h
( ni∑

k=1
wi−1,k f (xi−1,k)

) • parametric model
• universal function approximator
• training via non-convex optimization
• → Prof. Tuckerman
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Support vector machines
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linear separable problem linear inseparable problem

maximal margin plane bisects (reduced) convex hull closest points
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Symbolic regression

• stochastic search in the space of analytic functions
• fast, interpretable models

6 BIG DATA OF MATERIALS SCIENCE – CRITICAL ROLE OF THE DESCRIPTOR: SUPPL. INFORMATION

4. Performance of various descriptor with KRR and linear least square (Extended
Table 1 from main text)

Descriptor ZA, ZB Z⇤
A, Z⇤

B r�, r⇡ 1D 2D 3D 5D

(�, �) of KRR (3·10�4, 0.1) (0.01,
p

0.3) (1·10�5,
p

10) (3·10�4,
p

3000) (0.01, 10) (0.01, 10) (1·10�3,
p

300)

RMSE 0.41 (2·10�4) 0.40 (5·10�3) 0.31 (0.07) 0.14 (0.14) 0.10 (0.10) 0.08 (0.07) 0.06 (0.06)
MAE 0.28 (1·10�4) 0.26 (3·10�3) 0.20 (0.05) 0.12 (0.12) 0.08 (0.08) 0.07 (0.06) 0.05 (0.05)
MaxAE 2.22 (8·10�4) 2.19 (0.03) 1.82 (0.25) 0.32 (0.31) 0.32 (0.28) 0.24 (0.22) 0.20 (0.19)

RMSE, CV 0.39 (0.19) 0.21 (0.19) 0.30 (0.09) 0.14 (0.15) 0.11 (0.10) 0.08 (0.08) 0.07 (0.07)
MAE, CV 0.29 (0.13) 0.15 (0.14) 0.22 (0.07) 0.12 (0.12) 0.09 (0.09) 0.07 (0.06) 0.05 (0.06)
MaxAE, CV 0.87 (0.43) 0.45 (0.42) 0.65 (0.17) 0.27 (0.27) 0.18 (0.18) 0.16 (0.14) 0.12 (0.13)

Root mean square error (RMSE), mean absolute error (MAE), and maximum absolute error (MaxAE),
in eV, for the least-square fit of all data (first three lines) and for the test set in a leave-10%-out cross
validation (CV), averaged over 150 random selections of the training set (last three lines). In paren-
theses the corresponding errors for Gaussian kernel ridge regression at optimized (�, �). The numbers
are reported for selected descriptors, including Zunger’s descriptor (r�, r⇡) [4]. For Z⇤

A, Z⇤
B, each atom is

identified by a string of three random numbers, the errors are averages over 10 random selections.

5. Calculated �E of the 82 octet binaries, view of all compounds

Figure 2. Extended view of Fig.2, bottom, in main text
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components of d. We then look for the Ω-dimensional
(Ω ¼ 1; 2;…) descriptor d that gives the best linear fit of
PðdÞ: PðdÞ ¼ dc, where c is the Ω-dimensional vector of
coefficients. It is determined by minimizing the loss
function ∥P − Dc∥22, where D is a matrix with each of
the N rows being the descriptor di for each training data

point, and P is the vector of the training values Pi. We
emphasize that the choice of a linear fitting function for
PðdÞ is not restrictive since, as we will show below,
nonlinearities are included in a controlled way in the
formation of the candidate components of d. The function
PðdÞ is then determined by only Ω parameters.
The task is now to find, among all the Ω-tuples of

candidate features, the Ω-tuple that yields the smallest
∥P − Dc∥22. Unfortunately, a computational solution for such
a problem is infeasible (NP-hard) [23]. LASSO [21] provides
sparse (i.e., low-dimensional) solutions by recasting the
NP-hard problem into a convex minimization problem

argmin
c∈RM

∥P − Dc∥22 þ λ∥c∥1; ð1Þ

where the use of the l1-norm (∥c∥1 ¼
PM

α¼1 jcαj) is crucial.
The larger we choose λ > 0, the smaller the l1-norm of the
solution of Eq. (1) and vice versa. There is actually a smallest
λ̄ > 0, such that the solution of Eq. (1) is zero. If λ < λ̄, one or
more coordinates of c become nonzero.
We note that the so-called “feature selection” is a

widespread set of techniques that are used in statistical
analysis in different fields [24], and LASSO is one of them.
LASSO was successfully demonstrated in Ref. [17], for
identifying the low-dimensional representation of the for-
mation energy of an alloy, within the cluster expansion of
the Hamiltonian. Obviously, when a well-identified basis
set, such as the cluster expansion, is not available for the
property to be modeled, the feature space must be con-
structed differently. In this Letter, we start from scientific
insight, i.e., defining physically motivated primary features
that form the basis for a large feature space. We then search
for a low-dimensional descriptor that minimizes the RMSE,
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ∥P − Dc∥22

p
, for our N ¼ 82 binary

compounds. The property P that we aim to predict is
the difference in the LDA energies between RS and ZB for
the given atom pair AB, ΔEAB. The order of the two atoms
is such that element A has the smallest Mulliken electro-
negativity: EN ¼ −ðIPþ EAÞ=2. IP and EA are atomic
ionization potential and electron affinity.
For constructing the feature space, i.e., the candidate

components of the descriptor, and then selecting the most

FIG. 2 (color online). Calculated energy differences between
RS and ZB structures of the 82 octet binary AB materials,
arranged by using the nuclear numbers ðZA; ZBÞ as descriptor
(top) and according to our optimal two-dimensional descriptor
(bottom). In the bottom panel, seven ZB materials with predicted
ΔEAB > 0.5 eV are outside the shown window (see Supplemen-
tal Material [6]).

TABLE I. Root-mean-square error (RMSE) and maximum absolute error (MaxAE) in eV for the least-squares fit of all data (first two
lines) and for the test set in a leave-10%-out cross validation (L-10%-OCV), averaged over 150 random selections of the training set (last
two lines). The errors for ðZA; ZBÞ and ðrσ ; rπÞ [3] are for a KRR fit at hyperparameters ðλ; σÞ that minimize the RMSE for the L-10%-
OCV (see Supplemental Material [6]). The errors for the Ω ¼ 1; 2; 3; 5 (noted as 1D, 2D, 3D, 5D) descriptors are for the LASSO fit. In
the L-10%-OCV for the latter descriptors, the overall LASSO-based selection procedure of the descriptor (see text) is repeated at each
random selection of the test set.

Descriptor ZA; ZB rσ ; rπ 1D 2D 3D 5D

RMSE 2 × 10−4 0.07 0.14 0.10 0.08 0.06
MaxAE 8 × 10−4 0.25 0.32 0.32 0.24 0.20
RMSE, CV 0.19 0.09 0.14 0.11 0.08 0.07
MaxAE, CV 0.43 0.17 0.27 0.18 0.16 0.12

PRL 114, 105503 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 MARCH 2015

105503-3

Schmidt, Lipson, Science, 5923, 2009; Ghiringhelli et al, Phys. Rev. Lett., 2015



Learning theory

A

BC

D

ae

o

ℱ

prediction error =
approximation error a

+ estimation error e
+ optimization error o

F = model class, A = true model, B = best model in class, C = best
identifiable model (data), D = best identifiable model (optimization)

Changes in size of F ⇔ a vs. e ⇔ bias-variance trade-off
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Example: predicting atomization energies

• 7 165 small organic molecules (H,C,N,O,S; 1–7 non-H atoms)
• DFT PBE0 atomization energies
• today, errors are ∼ 0.5 kcal/mol for this dataset
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Design: the inverse problem

Find a molecule or material with given properties

Example:
Maximize binding constant pKi to PPARγ,
with aqueous solubility log S < 0, at T = 37◦C and pH = 7.2.

Assumption: Determining properties is possible, but expensive (“oracle”)

Direct approach

screen compound collections
map structure to property

Inverse approach

design compounds
map property to structures
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Figure: Franceschetti, Zunger: Nature, 60, 1999



Confidence estimates

“It is not the estimate [. . .] that matters so much
as the degree of confidence with the opinion”

Taleb, Random House, 2004

Known in cheminformatics as domain of applicability:
How to determine whether new data x are in the interpolation region?

Quantitatively: How far away is x from the training data?
• naive approaches can help as filters variable ranges → blackboard
• distance alone is insufficient in high-dimensional spaces → blackboard
• with the usual i.i.d. assumption in ML, this problem does not exist

15
Sushko et al.: J. Chem. Inf. Model., 2094, 2010; Sushko et al.: J. Chemometr., 202, 2010



Tendencies in ML for experimental versus computed data

experimental

• fewer data
• strong noise
• “integrated” properties

descriptors
• enrichment in screening
• limited by synthesis
• cheminformatics

quantitative structure-activity/
property relationships

computed

• more data
• no noise
• dependence on atom coordinates

unique representations
• fast and accurate predictions
• limited by approximations
• interpolation of ab initio data

quantum mechanics / machine
learning models

16
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Nomenclature
The words descriptor and fingerprint originate from cheminformatics.

Descriptor: (“descriptive parameter”)
Any numerical encoding of a (structural) property of a molecule

“The molecular descriptor is the final result of a [. . .]
mathematical procedure. . .” (Todeschini & Consonni, Wiley, 2009)

Often a vector of heterogeneous properties, selected ad hoc

Fingerprint: (subclass of descriptors)
Fixed-length (bit) pattern characterising a molecule
Usually homogeneous and topology -based (substructure fingerprints)

Representation: (subclass of descriptors)
Fulfills theoretical requirements for accurate predictions
Introduced to distinguish from ad hoc descriptors
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Descriptors

• computable properties in vector form; graph kernels
• used for experimental properties in cheminformatics
• use chemical abstractions, typically not unique and discontinuous
⇒ best for “integrated” properties

1-pentyl acetate
� Bonds in longest chain: 7
� Rotatable bonds: 4
� Negative partial charge
� surface fraction: 0.13
� Hydrogen bond acceptors: 1
. . .

Figure: Michael Schmuker
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Todeschini, Consonni: Handbook of Molecular Descriptors, Wiley, 2009;
Rupp, Schneider, Schneider: J. Comput. Chem., 108, 2008.



Representations

• numerical encoding of atomistic system for accurate interpolation
• together with kernel, defines space / basis functions

Requirements
• invariant: against transformations preserving the property

in particular translation, rotation, homonuclear permutations
• unique: different in property ⇒ different in representation

allows reconstruction of system
• smooth: continuous, ideally differentiable

works together with ML; needed for forces
• general: encode any system, including molecules and crystals
• fast: cheaper to compute than reference method
• efficient: supports learning by requiring few reference data

19
Huo, Rupp: arXiv 1704.06439, 2017; → Profs. von Lilienfeld, Tuckerman



Sources of data

experimental data

Literature

Databases:

• PubChem (pubchem.ncbi.nlm.
nih.gov, >90 M compounds)

• Online Chemical Database
(ochem.eu, >1.3 M records)

• Springer Materials
• Cambridge Crystallographic

Database

computed data

Literature

Databases:

• Materials Project
(materialsproject.org)
• Novel Materials Discovery

(nomad-coe.eu)
• Open Quantum Materials

Database
• AFLOWLib
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pubchem.ncbi.nlm.
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Summary

• machine learning finds regularity in data for analysis or prediction,
improving with more data
• there are many problem types and algorithms
• it can predict experimental and computational outcomes
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