
Neural network tutorial instructions

June 14, 2017

The archive file for the tutorial contains the following files:

CG Network Streamlined.cpp

L2 error.cpp

INPUT.txt

ala-dip-data all.txt

Makefile

The file “CG Network Streamlined.cpp” contains the source code for optimizing a neu-
ral network using the conjugate gradient algorithm discussed in the lecture. The file
“L2 error.cpp” contains a short program for computing the L2 error between a benchmark
free energy surface and that generated by the neural network from the training data. The
file “ala-dip-data all.txt” contains all of the data generated by a TAMD-.AFED calcula-
tion of the Ramachandran surface for the alanine dipeptide in aqueous solution. The file
“INPUT.txt” contains the input parameters for the calculation, and the file “Makefile” is
a makefile for compiling the source code.

In order to carry out the tutorial, you will need to follow these steps:

1. Unpack the tar file:

tar -xzvf Neural.tar.gz

2. Change to the directory just created and compile the source code. First, edit ’Make-
file’ and make sure the C and C++ compilers correspond to the ones you have
available on your system, e.g., ’gcc’ and ’g++’ or ’icc’. The compile the code by
typing

make

3. Create a training data set from the full data set. To do this, you can use one of two
commands:

head -n ala-dip-data all.txt > ala-dip-data.txt

or

1



tail -nl ala-dip-data all.txt > ala-dip-data.txt

Here n is the number of training points you wish to extract from the full data set.

3. Set the calculation type, number of conjugate gradient steps, checkpointing fre-
quency for weights, and number of conjugate gradient line-minimization steps. These
are the 2nd, 3rd, 4th, and 5th lines in the file “INPUT.txt”. Edit the file “IN-
PUT.txt”. On the second line, three options are possible: “1” indicates a calcula-
tion of neural network parameters starting from scratch. “-1” indicates a calculation
of neural network parameters starting from an old set contained in a file called
“weight.txt”. “0” indicates that you wish to perform a validation calculation of the
neural network. Start by setting this parameter to “1”. On the next line, the number
of CG steps is set. A good value for this number is between 100 and 200. The next
lines contains the frequency with which the weights are written, and a frequency of
20 is likely fine. Finally, the number of CG substeps appears on the last line. Here, a
value between 50 and 100 should suffice. Note that the more CG steps and substeps
you set, the longer the calculation will take.

4. set the number of hidden layers and the number of nodes within each hidden layer.
To do this, you need to edit the source code “CG Network Streamlined.cpp”. On
line 16 of this file is a #define command for the number of layers. Set the integer
value on this line to the desired number of hidden layers, e.g. 2. Three lines below
this is a variable declaration “int const amount” In the definition of this variable
is a bracket “{input n1, n2, n3, ...output}”. The parameters n1, n2, n3, ... are the
number of nodes within layer 1, 2, 3,... Make sure the number of integers set here
corresponds to the number of hidden layers, e.g., if you want 2 hidden layers, then
set 2 integers only between ’input’ and ’output’. Note that these numbers need not
be the same.

If you have changed any of lines in the source code, you will need to recompile by
typing

make

5. The compilation will produce an executable called “Machine Learning.exe”. Next,
run the calculation by typing

./Machine Learning.exe

The screen output will indicate the progress of your calculation in both CGmacrosteps
and CG substeps, reporting the value of the error or cost function E(w).

6. When the calculation has finished, run a second round of minimization. This is
done by editing the file “INPUT.txt”, changing the second line from “1” to “-1” and
inserting at the end of the file “INPUT.txt” the file “weight.txt” generated from the
run in step 5. Save the file. When this is done, type

./Machine Learning.exe

which will run the second round of minimization. Check the value of the cost func-
tion, which should have dropped below 0.001. If not, you can run another round of
minimization following this step again.

2



7. Now you are ready to validate the final neural network you have generated. To do
this, you need to generate a validation set. Use the commands in step 3 to create this
set in the following manner: If, in performing step 3, you used the “head” command,
use “tail” for creating the validation set, and vice versa. In this case, n will represent
the number of validation points you wish to use, and this value of n need not be
the same as used in step 3. Once you’ve created the validation set, edit the file
“INPUT.txt” and change the second line to “0”. Delete all of the lines below the
5th line, and insert the contents of the newly generated “weight.txt” file in place of
these deleted lines. Save the file. When this is done, type

./Machine Learning.exe

This will generate a file called “output.txt”. which contains the benchmark free
energy surface together with that generated by your neural network. In order to
compute the L2 error, compile the utility “L2 error.cpp” via

g++ -o L2 error.x L2 error.cpp -lm

(if “g++” is not your C++ compiler, then substitute the name of your compiler in
for whichever one you are using on your system). Run the utility

./L2 error.x

You will be asked to input the number of validation points you are using, and it
will compute and write to the screen the value of the L2 error. Record this value
together with the parameters of the network you used.

Now that you have completed one full run, try changing the parameters and see how the
L2 error changes. Things you can try to change include

The number of training data points.

The number of hidden layers.

The number of nodes in each layer.

The number of CG macrosteps.

8. If time permits, you can also try changing the activation function. The definitions
of these h(x) and its derivative, h′(x), are coded between lines 33 - 50 in the source
code CG Network Streamlined.cpp. Some different activation functions you can try
are

h(x) =
1

1 + a2x2

h(x) = tanh(ax)

h(x) = ln (1 + eax)

h(x) =

√

π

a
e−a

2
x
2

Here, a is a parameter you can choose and vary at will. Are the results you obtain
sensitive to the choice of the activation function?

3


