

Mark E. Tuckerman

Dept. of Chemistry and Courant Institute of Mathematical Sciences
New York University, 100 Washington Square East, NY 10003

NYU-ECNU Center for Computational Chemistry at NYU Shanghai 200062, China
华 东 师 范 大 学-纽约大学 计算化学联合研究中心

An Introduction to Neural Networks

NEW YORK UNIVERSITY MRSEC

Neural networks in everyday life…

Uses in handwriting recognition:

(From M. Nielsen, Neural Networks

and Deep Learning)

Uses in medicine:

J. Appl. Biomed. 11 47 (2013)

IBM’s Watson computer plays and

wins “Jeopardy” in 2011.

…..and after?

Eterni.mi – Create a chatbot of yourself after you’re

gone from your digital footprint?

Try to “mimic” the brain’s neuronal connections

First neuron-based computational model: McCulloch and Pitts (1943),

“A logical calculus of the ideas immanent in nervous activity”, Bull. Math. Biophys.

Kolmogorov Superposition Theorem (1957) – Answers Hilbert’s 13th problem (1900)

1 1

2 1

1

1 1

1

 (,...,) ,..., , [0,1],

 (,...,) ()

,..., 0, ()

n n p

n n

n p q p

q p

n q

f x x n x x x

f

f x x g x

x

Given a function of variables

can be represented (Sprecher form) as

1 1

:[0.1] [0,1]

 () : g y g R R

is monotonically increasing, and .

The function is continuous and

Proof (existence but NOT constructive):

1 1

1 2 1

1 2 1

 0 < , < 1,

 , :

 ,

n

n

R R

f

Let and be numbers such that

consider a set of functions ,..., such that

such that and such that, for the given set of ,...,

2 1

1

1 1

(,...,) () (1) ,
n n

n p q p

q p

f x x x f f

We now define a series of functions

, , 1,2,....j jh j

Applying the above result, in an inductive fashion, we have the following series:

2 1

1

1 1

(,...,) ()
n n

j n j p q p

q p

h x x x

1 1 (1) , f h f f

2

1 2 1 2 1() (1) (1) , (1)f h h f h f f h f

1

1

 (1) , (1)
r

r r

j r

j

f h f f

 ,r Let

1

1

 lim lim(1) 0, lim lim (1) 0
r

r r

j r
r r r r

j

f h f f

1 1

1

(,...,) (,...,)n j n

j

f x x h x x

2 1

1 1 1

 = ()
n n

j p q p

j q p

x

2 1

1 1 1

 = ()
n n

j p q p

q j p

x

2 1

1 1

()
n n

p q p

q p

g x

 Q.E.D.

Iterating the Kolmogorov theorem:

2 1

1

1 1

 (,...,) ()
n n

n p q p

q p

f x x g x

1

1

(,...,) ()
n

q n p q p

p

h x x x

2 1

1

1 1

(,...,) ()
n n

q n q p r p

r p

h x x x

1

1

(,...,) ()
n

r n p r p

p

h x x x

2 1

1

1 1

(,...,) ()
n n

r n r p s p

s p

h x x x

2 1 2 1 2 1

1

1 1 1 1

(,...,) ()
n n n n

n q r p s p

q r s p

f x x g x

 etc.

Kurkova’s Theorem (1991)

 2 1, , 1,..., , 1,...,

pqm m n w p n q m Let be an integer such that and let

be a set of parameters. Then, Kolmogorov's theorem can be restated as

1

1 1

(,...,) ()
m n

n pq q p

q p

f x x g w x

Kurkova’s theorem can also be iterated:

1

1 1 1 1

(,...,) ()
m m m n

n q r ps s p

q r s p

f x x g w x

V. Kurkova Neural Computation (1991)

Concrete example of a neural network:

(1) (0) (0) (1) (1)

0

1

(2) (1) (1) (1) (2) (2)

0

1

(3) (2) (2) (2)

0

1

 ()

,

,

s p p s

n

s sp p s s s

p

m

r rs s r r r

s

m

q qr r q

r

x x c

a w x w z h a

a w z w z h a

a w z w

 (3)

1

1

 (,...,)
m

n q

q

f x x h a

() h y known as an "activation function"

1 1 1 2 2 2 1 1 1

1 1

NN 1 NN

0 0 1 1 1 1

0 0 0 0

1 1 1 1

(,..., ,) (,)

K K K K K K

K K

n

M M M n
K K K K

p pj j j j j j j j j j j

j j j p

f x x f

h h h x w w w w w w w w

w x w

Expanded out and generalized to an arbitrary number K of nestings.

Inputs Hidden Layers Outputs

1

2

n

x

x

x

f

(1){ }w

(2){ }w (3){ }w (1){ }Kw

(){ }Kw

(1)

1z

(1)

2z

(1)

3z

(1)

mz

(2)

1z

(2)

2z

(2)

3z

(2)

mz

()

1

Kz

()

2

Kz

()

3

Kz

()K

mz

Schematic/graph representation of a neural network

1
()

1 x
h x

e

Examples of activation functions

Sigmoid function:

Rectified linear unit (“ReLu”) function:

() max(0,) (not differentiable)

() ln(1) (soft, differentiable)x

h x x

h x e

Soft form called “softplus” function:

Many other types: see stats.stackexchange.com

Network training

Given M specific values of the function fλ, λ= 1,…, M at specific values xλ

training consists in using this data to fit a set of connection parameters w.
1 ,...., nx x

In order to perform this training, we first set up a regression cost function

or error function:

2

1

1
() ;

2

M

NNE f f
M

 w x w

The cost function must then be minimized with respect to w:

0
E

w

The error function can also include a regularization term:

2

T

1

1
() ;

2 2

M

NNE f f
M

 w x w w w

(1) (1)

() (1) ()
1 1

()

()

l lM m
s

l l l
sjr s jr

aE E

w a w

x

x

We can express this as a “backwards propagation” iterative scheme through the layers

of the network, using the following rules for the above derivatives:

(1)

1
(;)

;
NNK

NN

E E
f f

Ma f

x w

x x w

(1)
1

()

(1)
1

, 0, 1,...,
()

() , 0
()

M

jl

r

M
l

jl

r

E
x l j n

a

E
h a l K

a

x

x
x

(1)

(1)

()

(1)
1

()

() ()

(1)
1

, 0

()
() , 1

l

l

m
l

rjl
j j

l m
r l l

rj rl
j j

E
w l

aE

a E
w h a l K

a

x

x
x

x

Calculation of derivatives needed for network training

Inputs Hidden Layers Outputs

1

2

n

x

x

x

f

(1){ }w

(2){ }w (3){ }w (1){ }Kw

(){ }Kw

(1)

1z

(1)

2z

(1)

3z

(1)

mz

(2)

1z

(2)

2z

(2)

3z

(2)

mz

()

1

Kz

()

2

Kz

()

3

Kz

()K

mz

“Back propagation”

Optimization algorithms

Steepest descent (a.k.a. gradient descent) is based on a first-order ODE:

d E

d

w

w

Discretize in “time” τ:

()

() ()
E

 w w

w w
w

Conjugate gradient descent:

Local quadratic expansion of () about 0E w

T T1
() H

2
E w w w w F

w 0 HE w F

T T

*Let be the solution vector. Let be vectors such that H Hk i j i i ijw b b b b b

* k k

k

w b

T T

*

T T

H

H H

j j

j

j j j j

b w b F

b b b b

*H Hk k

k

w b

T T T

*H H Hj k j k j j j

k

 b w b b b b

Conjugate gradient descent:

()
(1) ()

()

i
i i

i

d
w w

d

(0)(0) E w wd

()() (1)ii E i w wd d

 T

()

T

(1)

(1) (1)

ii E

i i

w wd H

d H d

() (1) ()

1
(1) i i ii E E

 w w d w wH d

Using Langevin dynamics:

Create a probability distribution function of the w parameters:

1 () ()() , E EP e d e
w ww wN N

Sample using overdamped Langevin dynamics with a “temperature” β-1

1d d 2 dE ww η

η is a vector of Gaussian random numbers with distribution of zero-mean

and unit-width.

1 () ()
() () (()) 2

2
E

w

r r
w w w

Low-error algorithm [Matthews and Leimkuhler]:

r(τ) and r(τ+δτ) are vectors of Gaussian random numbers drawn from a distribution of

zero mean and unit width.

Can also write this as a second-order dynamical system:

1

1 1/2

d M d

d ()d d 2 M d

t

E t t

 w

w p

p w p η

1

2

1

0.5* * ;

0.5* *M ;

* * * (1) / 2 ;

0.5* *M ;

Update Gradients;

0.5* * ;

t t

t

t

e e

t

t

p p F

w w p

p p R

w w p

p p F

Low-error numerical integrator [Matthews and Leimkuhler (2012)]:

 Let (),E wF w 1 1/2 2 M

Use of minibatches:

If the dataset if large, the evaluation of can be very expensive. () ()E wF w w

Define a minibatch of size m < M and a “noisy” cost function and gradient

2

1

1
() ; , () ()

2

m

NNE f f E
m

 ww x w F w w

Assume the noisy gradient can be written as

1/2() () Σ()M F w F w w R

where Σ(w) is the (unknown) covariance matrix of the noisy gradient

1

1/2 1 1/2

A A

d M d

d ()d Σ()M d d 2 M d

t

t t

w p

p F w w η p η

Rewrite the stochastic sampling scheme as

1. Model Σ(w), e.g., Σ(w) = σI

2. Run minibatches in parallel and estimate Σ(w) from the parallel runs.

3. Approximate update algorithms for Σ(w) [Leimkuhler etal. NIPS (2015)].

Simple Example

We take 10 “synthetic” data points drawn from the function f(x) = sin(2πx) to which

random noise is added. We use these to train a network with a single hidden later

having M units/nodes:

• M = 1: Insufficient to represent f(x)

• M = 3: Close approximation to f(x)

• M = 10: Overfitting of f(x).

More complicated two-dimensional example

(,)f x y

• One layer

• 10 nodes

• 10,000 training pts

• 41 parameters

• Steepest descent

• 1,000 validation pts

Minibatch sizes

• Black = 1

• Pink = 10

• Turquoise = 100

• Blue = 1000

• Red = 10,000

2

1

1
RMSE (, ;) (,)

gN

NN

g

f x y f x y
N

 w

More complicated two-dimensional example

(,)f x y

• One layer

• 10 nodes

• 10,000 training pts

• 41 parameters

• Conjugate gradient

• 1,000 validation pts

Minibatch sizes

• Black = 1

• Pink = 10

• Turquoise = 100

• Blue = 1000

• Red = 10,000

2

1

1
RMSE (, ;) (,)

gN

NN

g

f x y f x y
N

 w

More complicated two-dimensional example

(,)f x y

• Two layers

• 20 nodes/layer

• 10,000 training pts

• 501 parameters

• 1,000 validation pts

Minibatch sizes

• Black = 10,000 CG

• Green = 1,000 CG

• Turquoise = 100

• Blue = 10,000 SD

2

1

1
RMSE (, ;) (,)

gN

NN

g

f x y f x y
N

 w

Network training using gradients

Given M specific values of the function fλ, λ= 1,…, M at specific values

xλ training consists in using this data to fit the connection parameters w.

In order to perform this training, we set up a gradient-based regression cost function:

2

1

1
() ;

2

M

G NNE f f
M

 w x w

The cost function must then be minimized with respect to w:

() 0GE w w

The error function can also include a regularization term:

2

T

1

1
() ;

2 2

M

G NNE f f
M

 w x w w w

1 ,...., nx x

Analogous iterative back-propagation schemes can be derived for gradient training

Calculation of input derivatives

Recall our general definition

(1)

()

(0) (0)

0

1()

(1) (1) (1)

0

1

()

1

1

, 1

 , = 2,...,

 (,...,)

l

K

n

js s j

sl

j m
l l l

js s j

s

m
K

n s

s

w x w l

a

w h a w l K

f x x h a

(1)

(0)

()

()

(1) (1) (1)

1

, 1

, 1

l

l jr

j l
m

jr l l l
r js s jr

s

w l
a

y
x w h a y l

Final output:
()

() () (1)

1

Km
K K K

j j jr

jr

f
h a w y

x

Dropout regulation of neural networks

(0)

(1) (0) (0) (1) (1) (1)

0

1

(2) (1) (1) (1) (2) (2) (2)

0

1

(3) (2) (2) (2)

0

1

 ()

,

,

s p p s

n

s sp p s s s

p

m

r rs s r r r

s

m

q qr r q

r

x r x c

a w x w z r h a

a w z w z r h a

a w z w

 (3)

1

1

 (,...,)
m

n q

q

f x x h a

Srivastava et al. J. Mach. Learning Res. (2014)

Let r(l) be a Bernoulli random number

Connection to Bayes’ Theorem

Bayes’ Theorem:

(|) ()
(|)

()

P p
P

p

w w
w

D
D

D

posterior likelihood prior

Take the prior to be a Gaussian of width σ

T 2

/2

/2

2

1
(,)

2

D

p e

w ww

1 (;) (;)(| ,) () , () E EP e d e
w ww wD DD N N

Take the likelihood function to be the Boltzmann distribution of the cost function:

Connection to Bayes’ Theorem

The posterior probability becomes:

2

T 2
1

/2 ;
21 /2

2

1
(, , |) ()

2

M

NN
D f f

M
P e e

x w
w ww D N

If we fix σ and β and take the −log of the posterior, we obtain

2

T

2
1

1
ln (, , |) ; const

2
1)

2
(

M

NNP f f
M

 w x w w wD

which is just the regularized cost function

We can also consider σ and β as additional parameters to be optimized,

in which case, we have

2

T

2
1

1
ln (, , |) ;

2 2

 ln() ln ()

(2

)

M

NNP f f
M

D

w x w w wD

N

We do not know N(β) analytically, so the optimization cannot be performed directly.

The following procedure is, therefore, used:

1. Begin with an estimate of σ and β.
2. Optimize (1) to obtain a solution for w, denoted wopt.
3. Use wopt to expand the unregularized cost function to second order:

2

1

T T

0 opt opt opt

1
() ;

2

1
 () () ()

2

M

NNE f f
M

E

w x w

b w w w w A w w

4. Compute N(β) analytically from the second-order expansion.

2 T 1

/2

1/2 /22
() [det()]

D

e

b A bAN

2

T

opt opt opt2
1

1
ln (, , |) ;

2 2

 ln() ln ()

M

NNP f f
M

D

w x w w wD

N

5. Substitute into (2) and optimize with respect to σ and β

6. Repeat from (2) until convergence is reached.

Such an approach is known as a Bayesian neural network.

Conclusions

1. Kolmorogov’s superposition theorem and Kurkova’s corollary form

 a rigorous basis for the neural network scheme

2. The nesting of functions and large data sets make the optimization of

 neural networks with respect to their parameters computationally

 expensive.

3. The iterative “back propagation” scheme improves the computational

 efficiency.

4. The data can also be processed in minibatches to improve the efficiency

 further.

5. In using neural networks, care must be taken to avoid overfitting, as with

 any other ML approach.

6. Gradient information can also be used to optimized a neural network.

7. Connecting neural networks to Bayes’ theorem leads to the Bayesian

 neural network approach.

