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An Introduction to Neural Networks 

NEW YORK UNIVERSITY MRSEC 



Neural networks in everyday life… 

Uses in handwriting recognition: 

(From M. Nielsen, Neural Networks 

and Deep Learning) 

Uses in medicine: 

J. Appl. Biomed. 11 47 (2013) 

IBM’s Watson computer plays and 

wins “Jeopardy” in 2011. 

…..and after? 

Eterni.mi – Create a chatbot of yourself after you’re 

gone from your digital footprint? 



Try to “mimic” the brain’s neuronal connections 

First neuron-based computational model:  McCulloch and Pitts (1943), 

“A logical calculus of the ideas immanent in nervous activity”, Bull. Math. Biophys. 



Kolmogorov Superposition Theorem (1957) – Answers Hilbert’s 13th problem (1900) 
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Given a function of variables

can be represented (Sprecher form)  as
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is monotonically increasing, and .  

The function  is continuous and 

Proof (existence but NOT constructive): 
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Let and  be numbers such that 

consider a set of functions ,..., such that

such that and such that, for the given set of ,...,
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We now define a series of functions  

,  ,  1,2,....j jh j  

Applying the above result, in an inductive fashion, we have the following series:  
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Iterating the Kolmogorov theorem: 
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Kurkova’s Theorem (1991) 
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Kurkova’s theorem can also be iterated: 
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V. Kurkova Neural Computation (1991) 



Concrete example of a neural network: 
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( ) h y known as an "activation function"
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Expanded out and generalized to an arbitrary number K of nestings. 



Inputs                                       Hidden Layers                                              Outputs 
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Schematic/graph representation of a neural network 
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Examples of activation functions 

Sigmoid function: 

Rectified linear unit (“ReLu”) function: 

( ) max(0, )         (not differentiable)

( ) ln(1 )          (soft, differentiable)x

h x x

h x e



 

Soft form called “softplus” function: 

Many other types:  see stats.stackexchange.com 



Network training 

Given M specific values of the function fλ, λ= 1,…, M at specific values xλ 

training consists in using this data to fit a set of connection parameters w.    
1 ,...., nx x 

In order to perform this training, we first set up a regression cost function  

or error function: 

 
2

1

1
( ) ;

2

M

NNE f f
M






 w x w

The cost function must then be minimized with respect to w: 

0
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w

The error function can also include a regularization term: 
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We can express this as a “backwards propagation” iterative scheme through the layers 

of the network, using the following rules for the above derivatives: 
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Calculation of derivatives needed for network training 
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“Back propagation” 



Optimization algorithms 

Steepest descent (a.k.a. gradient descent) is based on a first-order ODE: 
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Conjugate gradient descent: 

Local quadratic expansion of ( ) about 0E w
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Conjugate gradient descent: 
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Using Langevin dynamics: 

Create a probability distribution function of the w parameters: 

1 ( ) ( )( ) ,        E EP e d e     
w ww wN N

Sample using overdamped Langevin dynamics with a “temperature” β-1 

1d d 2 dE     ww η

η is a vector of Gaussian random numbers with distribution of zero-mean  

and unit-width. 
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Low-error algorithm [Matthews and Leimkuhler]: 

r(τ) and r(τ+δτ) are vectors of Gaussian random numbers drawn from a distribution of  

zero mean and unit width. 



Can also write this as a second-order dynamical system: 
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Low-error numerical integrator [Matthews and Leimkuhler (2012)]: 

 Let   ( ),E wF w 1 1/2 2 M  



Use of minibatches: 

If the dataset if large, the evaluation of                          can be very expensive. ( ) ( )E wF w w

Define a minibatch of size m < M and a “noisy” cost function and gradient 
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Assume the noisy gradient can be written as 
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where Σ(w) is the (unknown) covariance matrix of the noisy gradient 
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Rewrite the stochastic sampling scheme as 

1. Model Σ(w), e.g., Σ(w) = σI 

2. Run minibatches in parallel and estimate Σ(w) from the parallel runs. 

3. Approximate update algorithms for Σ(w) [Leimkuhler etal. NIPS (2015)]. 



Simple Example 

We take 10 “synthetic” data points drawn from the function f(x) = sin(2πx) to which 

random noise is added.  We use these to train a network with  a single hidden later  

having M units/nodes: 

• M = 1:  Insufficient to represent  f(x) 

 

• M = 3:  Close approximation to  f(x) 

 

• M = 10:  Overfitting of  f(x). 



More complicated two-dimensional example 

( , )f x y 

• One layer 

• 10 nodes 

• 10,000 training pts 

• 41 parameters 

• Steepest descent 

• 1,000 validation pts 

 

Minibatch sizes 

• Black = 1 

• Pink = 10 

• Turquoise = 100 

• Blue = 1000 

• Red = 10,000 
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More complicated two-dimensional example 

( , )f x y 

• One layer 

• 10 nodes 

• 10,000 training pts 

• 41 parameters 

• Conjugate gradient 

• 1,000 validation pts 

 

Minibatch sizes 

• Black = 1 

• Pink = 10 

• Turquoise = 100 

• Blue = 1000 

• Red = 10,000 
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More complicated two-dimensional example 

( , )f x y 

• Two layers 

• 20 nodes/layer 

• 10,000 training pts 

• 501 parameters 

• 1,000 validation pts 

 

Minibatch sizes 

• Black = 10,000 CG 

• Green = 1,000 CG 

• Turquoise = 100 

• Blue = 10,000 SD 
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Network training using gradients 

Given M specific values of the function    fλ, λ= 1,…, M at specific values  

xλ                      training consists in using this data to fit the connection parameters w.    

In order to perform this training, we set up a gradient-based regression cost function:  
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The cost function must then be minimized with respect to w: 

( ) 0GE w w

The error function can also include a regularization term: 
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Analogous iterative back-propagation schemes can be derived for gradient training 



Calculation of input derivatives 

Recall our general definition 
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Final output:  
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Dropout regulation of neural networks 
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Srivastava et al. J. Mach. Learning Res. (2014) 

Let r(l) be a Bernoulli random number 



Connection to Bayes’ Theorem 

Bayes’ Theorem: 
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Take the prior to be a Gaussian of width σ 
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Take the likelihood function to be the Boltzmann distribution of the cost function: 



Connection to Bayes’ Theorem 

The posterior probability becomes: 
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If we fix σ and β and take the −log of the posterior, we obtain 
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which is just the regularized cost function 

We can also consider σ and β as additional parameters to be optimized,  

in which case, we have 
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We do not know N(β) analytically, so the optimization cannot be performed directly. 

The following procedure is, therefore, used: 

1.  Begin with an estimate of σ and β. 
2.  Optimize (1) to obtain a solution for w, denoted wopt. 
3.  Use wopt to expand the unregularized cost function to second order: 
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4. Compute N(β) analytically from the second-order expansion. 
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5.  Substitute into (2) and optimize with respect to σ and β 

6.  Repeat from (2) until convergence is reached. 

Such an approach is known as a Bayesian neural network. 



Conclusions 

1. Kolmorogov’s superposition theorem and Kurkova’s corollary form  

      a rigorous basis for the neural network scheme 

 

2. The nesting of functions and large data sets make the optimization of 

      neural networks with respect to their parameters computationally  

      expensive.   

 

3. The iterative “back propagation” scheme improves the computational 

      efficiency. 

 

4. The data can also be processed in minibatches to improve the efficiency 

      further. 

 

5. In using neural networks, care must be taken to avoid overfitting, as with 

      any other ML approach. 

 

6. Gradient information can also be used to optimized a neural network. 

 

7. Connecting neural networks to Bayes’ theorem leads to the Bayesian 

      neural network approach. 


