An Introduction to Neural Networks

\ ‘\‘\

AWK WY

' N

X 4‘\‘,\\.\\999;*@

7 W 7
8L §.:»:.s‘{/ M(S)
P> AR

Aﬁ\\\w g\

) 4»2&\‘\@@1'}\
N0\
N

!, w); w? weights

3-2-1 01 2 3
¢ [rad]

Mark E. Tuckerman
Dept. of Chemistry and Courant Institute of Mathematical Sciences
New York University, 100 Washington Square East, NY 10003
NYU-ECNU Center for Computational Chemistry at NYU Shanghai 200062, China
KB K F-AARE HREUZERET A O

Ve

S
N /:

250\

tBdABH XS
NYU SHANGHAI

New York University

NEW YORK UNIVERSITY MRSEC
P

Free Energy [kcal/mol]

Neural networks in everyday life...

IBM’s Watson computer plays and
wins “Jeopardy” in 2011.

What'’s the first thing
you remember from your life?

.....and after?

Eterni.mi — Create a chatbot of yourself after you’re
gone from your digital footprint?

Try to “mimic” the brain’s neuronal connections

FIGURE 1

First neuron-based computational model: McCulloch and Pitts (1943),
“A logical calculus of the ideas immanent in nervous activity”, Bull. Math. Biophys.

Kolmogorov Superposition Theorem (1957) — Answers Hilbert’s 13" problem (1900)
Given a function f (x,,..., x,) of n variables x,,..., x,, x; €[0,1],
f canbe represented (Sprecher form) as

f(xl,---,xn>=2”2“g[izp¢q(xp)j

Apseenn Ay >0, @, (X) Ismonotonically increasing, and ¢ :[0.1] — [0,1].
The function g(y) is continuousand g:R* — R’

Proof (existence but NOT constructive):
Let £ and 6 be numbers suchthat 0< g,6 <1,

consider a set of functions ¢,,...,@,..,, suchthat 3y:R* - R’
such that |y||<|f| andsuch that, for the given set of ¢,,...,¢,,..,

(0x)- 357 Shoti) | <@l A=ol]

We now define a series of functions

Vi hj,]=12,...0
2n+1 n
hj(xi""vxn)zzyj(ﬂ’pwq(xp)]
g=1 p=1
Applying the above result, in an inductive fashion, we have the following series:
|f-hf<@=a|f]. [n]=o]f]

[(f —h) =ty <@=&)|f ~h[<@=&)*[F], el =6]F -h]=6C-2)|f]

||f—2h,- ca-oy il Inl-sa-o |

j=1

Let r — oo,

lim

r—»o0

f—Zh

<lim(1—e) |1 =0, fim|y,|=limoa-e) 7] =0

r—»o0

F (X X,) = Zh(xl, %)

o 2n+1

3% [zzp%(x >]

=1 g=1

lterating the Kolmogorov theorem:

f(xi,---,xn)=2”Z“g[izp<oq(xp)]

(NCHED WIACH

2n+1

()= 322 S0
hr (Xl""’ Xn) — Zn_:ipWr (Xp)

M, (X ,) = Z%[Zi (xp>]
f (X, X)) = znzﬂg(znzﬂyq[znzﬂyrﬁz/l (Xp))D etc.

Kurkova’s Theorem (1991)
V. Kurkova Neural Computation (1991)

Let m be aninteger suchthat m > 2n+1, andlet W, P=1..,n q=1..m
be a set of parameters. Then, Kolmogorov's theorem can be restated as

f(x1,...,xn>=ig[iwpq¢q(xp)]

Kurkova’s theorem can also be iterated:

(40 %) =20 iyq[mxn(iwmws(xp)j]

Concrete example of a neural network:

w,(X,) =X, +C;

n

O _ Ny © © O _h(a®
al® => W%, +w, 2¥ =h(a?)
p=1
@ _ N (DD 4y ® @ @
a® =" (wWPz" +wy), z? =h(a®)
S=
m'

(3) _ (2)5(2) (2)
aq _Z(qu Ly +Wq0)

r=1
f(xl,...,xn)zzm:h(aé?’))
g=1

h(y) known as an "activation function"

Expanded out and generalized to an arbitrary number K of nestings.

Fan (kg0 X0, W) = Fy (X, W)

M
K-1 K K
Z [Z h(Zh[zxpwm +W0]1jvv:llllz +W(1)Jz) Jk- le -1 +W0jKlejKle +W0j|<

k=1 Jka=L h=l =1

Schematic/graph representation of a neural network

Inputs Hidden Layers Outputs

Examples of activation functions

Sigmoid function:

1
1 0.8-— n
h(x) — — oo l
1+e€ = _
0.2 i
%%
Rectified linear unit (“ReLu”) function: L
h(x) = max(0, x) (not differentiable) 3
Soft form called “softplus” function: B
h(x) =In(1+¢€") (soft, differentiable) ———

Many other types: see stats.stackexchange.com

10

Network training

Given M specific values of the function f,, A=1,..., M at specific values x* = X, ..., X"
training consists in using this data to fit a set of connection parameters w.

In order to perform this training, we first set up a regression cost function
or error function:

1 ¥ , z
E(W):m;‘f,W (x ;w)—fl‘

The error function can also include a regularization term:

E(W)_ Z‘Nwa—f‘+ w'w

The cost function must then be minimized with respect to w:

oE

iy o
oW

Calculation of derivatives needed for network training

M m(D (141) 1A

ga; " (x7)
D3I .
aw“ a(”(x) owy)

A=1 s=1

=0, j=1..,n
Zaa(lﬂ)(x) J

A=1

v B a0y, 0<l<K
;aa(lﬂ)(xﬁ) (aj (X))’ <Is

We can express this as a “backwards propagation” iterative scheme through the layers
of the network, using the following rules for the above derivatives:

ok ok 1
aa(K+1) (Xl) = afNN (Xl;W) = M (fNN (Xl;W)_ f/l)
((D) 6E 0 }
E JZ oa; ™ (Xl)wrj | =

= <
oa;’ (x*) ”i) OE

Outputs

“Back propagation”

Optimization algorithms

Steepest descent (a.k.a. gradient descent) is based on a first-order ODE:

dw oE
dr ow
Discretize in “time” t:
oE

W(r +07) =W(r)-or EW

w=w(7)

.14

T T T
-10 -5 0 5 10

Steepest Descent

Conjugate gradient descent:

e CONjugate Gradient

Local quadratic expansion of E(w) about O ’

E(w) z%WTHW—WTF

VWEZO = Hw=F X

Let w. be the solution vector. Let b, be vectors such that b;Hb, =b/Hb;,5;

W. :Zﬁkbk
k
Hw, :Z BHb,
k
biHw, = Zk:ﬂkb}l—lbk = SbiHb.

5 - bJTHW* - bJTF
' biHb, biHb,

Conjugate gradient descent:

eeeeeeeeeeeeeee

d() -

Wi +1) = W(i) + o —2

d (i)
d(0) = -V, E e

d(i) =—V,,E,q + Bd(i-1)

_dT(i—l).H.(vWE\W(i))
p= d'(i-1)-H-d(i-1)

H-d(1-1) = %[VWE ‘W(i)-l—gd(i—l) -V,E ‘W(i)}

Using Langevin dynamics:

Create a probability distribution function of the w parameters:
P(w)=n"e " gy = j dw e =)

Sample using overdamped Langevin dynamics with a “temperature” -1

ydw = -V, Edr ++/28 ydn

1 is a vector of Gaussian random numbers with distribution of zero-mean
and unit-width.

Low-error algorithm [Matthews and Leimkuhler]:

wW(zr +o7)=w(r)-V, E(W(r))or + \/2,8_1757 [o)+ r2(2' +07) }

r(z) and r(z+017) are vectors of Gaussian random numbers drawn from a distribution of
zero mean and unit width.

Can also write this as a second-order dynamical system:

dw = M "pdt
dp = -V E(w)dt — ypdt + 28 M %y

Let F=-V E(w), > =428 yMY?

Low-error numerical integrator [Matthews and Leimkuhler (2012)]:

P« pP+0.5*At*F;

W<« W+0.5*At*M™p;

pp*e ™ +I*R*\/(1—e ™)/ 2y;
W< W+0.5*At*M™p;

Update Gradients;
P« Pp+05*At*F;

Use of minibatches:

If the dataset if large, the evaluation of F(w)=-V,E(w) can be very expensive.
Define a minibatch of size m <M and a “noisy” cost function and gradient
1 m

EW) =5 f (X 1w)- £, Fw)=-v,Ew)

Assume the noisy gradient can be written as

F(w) = F(wW) +/Z(W)M"’R

where X(w) is the (unknown) covariance matrix of the noisy gradient

Rewrite the stochastic sampling scheme as

dw = M "pdt

dp = F(w)dt — /Z(w)MY2dn - ypdt + 2 8y MY%dn,
1. Model Z(w), e.g., X(w) = ol

2. Run minibatches in parallel and estimate X(w) from the parallel runs.
3. Approximate update algorithms for X(w) [Leimkuhler etal. NIPS (2015)].

Simple Example

We take 10 “synthetic” data points drawn from the function f(x) = sin(2zx) to which
random noise is added. We use these to train a network with a single hidden later
having M units/nodes:

I M =10

M = 1: Insufficient to represent f(X)
M = 3: Close approximation to f(x)

« M =10: Overfitting of f(x).

prediction

More complicated two-dimensional example

N

1 2
= 2ol Oy W) = £,y |
g A=l
* One layer
N W « 10 nodes
8 | O « 10,000 training pts
- 25]
6 | x 1 e 41 parameters
Al '] « Steepest descent
1 | 2 « 1,000 validation pts
oc
0r 1 A wrwigreasd - Minibatch sizes
2t . 1.0 |+ 1 ¢ Black=1
4 L J « Pink=10
4 2 0 2 4 6 8 10 012545678010 Turquoise=100
target training epochs hd Blue = 1000

 Red =10,000

prediction

More complicated two-dimensional example

RMSE

3.0

1.5

1.0

0.5

—_
N

3 4 5 6 7 8
training epochs

9

Niz[fNN (Xi’ y/l;W) —f (Xl’ yﬂ)]2

One layer

10 nodes

10,000 training pts
41 parameters
Conjugate gradient
1,000 validation pts

Minibatch sizes

Black =1

Pink = 10
Turgquoise = 100
Blue = 1000
Red = 10,000

prediction

More complicated two-dimensional example

(X y)

N

1 A A 2 iy P
RMSE = _ZI:fNN(X 1y 1W)_f(x 1y):'
Ng A=1
00— ggg T « Two layers
8 | 1 0.5 « 20 nodes/layer
6 |] 045 « 10,000 training pts
Al |, odo « 501 parameters
.| | 2 o35 « 1,000 validation pts
T 030
°T | 025 | N\ % Minibatch sizes
2 T 0.20 | . 1+ Black =10,000 CG
4} ! : 312 ' .. '+ Green=1,000CG
4 2 0 2 4 6 8 10 "0 1020 30 40 50 60 70 80 90100 * Turquoise = 100

target training epochs Blue =10,000 SD

Network training using gradients

Given M specific values of the function Vf,, A= 1,..., M at specific values
x»=X/,..., X’ training consists in using this data to fit the connection parameters w.

In order to perform this training, we set up a gradient-based regression cost function:

1 M . :
EG(W):m;‘VfNN (x ;W)—Vfl‘

The error function can also include a regularization term:
1 J 2 o
E.(w)= —Z‘VfNN (x*;w)—Vfl‘ +—wW'w
2M = 2

The cost function must then be minimized with respect to w:

VW EG (W) — O

Analogous iterative back-propagation schemes can be derived for gradient training

Calculation of input derivatives

Recall our general definition

Zw(o)x + Wi, | =1
() _
aj = m(l—l)
S wh(al?)+wh?, 122, K
L s=1
m(K)
K
f (X X,) = > h(al)
s=1
(\/(0)
Wi | =1
(h r’
ﬁa _y(l) — J (D
OX, > Wi (al) yiY, 1>
L s=1

of
Final output: Pk Z h’(a(K))W(K)y(K—l)
j=1

Dropout regulation of neural networks
Srivastava et al. J. Mach. Learning Res. (2014)

a) Standard Neural Net {b) After applying dropout.

Let r) be a Bernoulli random number
o,(x,) =r%; +c,

n
al® => W% +w, 29 =r®h(a?)
p=1

"

m
@ _ D0 L @ _ (@h(a®
a® =" (wPz® +w), 2P =r®h(a®)

rs
s=1

!

m

() — (2) 5(2) (2)
% _Z<qu 2y~ Wy)
r=1
m

f (% X,) =D h(a®)

q=1

Connection to Bayes’ Theorem

Bayes’ Theorem:
P(D|w)p(w)
p(D)

P(w|D) =

posterior oc likelthood x prior

Take the prior to be a Gaussian of width G

D/2
1 j e—WTW/ZGZ

2
27O

(W,) = (
Take the likelihood function to be the Boltzmann distribution of the cost function:

P(@ | W,IB) _ W—l(ﬂ)e—ﬂE(w;@)’ W(,B) _ de e—,BE(w;@)

Connection to Bayes’ Theorem

The posterior probability becomes:

N W)t
1 jD/Z e_m;‘f,\“\, (xl ,W)— f;a‘ e—WTwlZGZ

2
27T0

P, | D) :wl(ﬂ)[

If we fix o and 3 and take the —log of the posterior, we obtain

‘2

_ BN . 1 o1
_InP(W,a,,B|®)_m;‘fNN(x ,W)—fi +262W w +const (1)

which is just the regularized cost function

We can also consider ¢ and 3 as additional parameters to be optimized,
in which case, we have

~InP(w, o, 8| D) :%i‘ fn (xﬂ';w)— f,
+Dln(é)+ln9\f(,8)

+ W' W 2
20° @)

"

We do not know MpB) analytically, so the optimization cannot be performed directly.

The following procedure is, therefore, used:

1. Begin with an estimate of ¢ and [3.
2. Optimize (1) to obtain a solution for w, denoted w,,,.
3. Use w,, to expand the unregularized cost function to second order:

1 4 2
E(w)=—) [f, (X" ;w)-f
(W)= gy 22 f (¢ w) = 1
1
~ EO + bT (W_Wopt) +§(W_Wopt)TA(W_Wopt)
4. Compute Mp) analytically from the second-order expansion.

D/2

N(B) = %T [det(A)] V2e/ P A"

5. Substitute into (2) and optimize with respect to ¢ and [3

- In P(W, 0, ﬂ | @) — Z‘ NN X Wopt f ‘ OptTWOpt

+ DIn(a)+In N(p)

6. Repeat from (2) until convergence is reached.

Such an approach is known as a Bayesian neural network.

Conclusions

. Kolmorogov’s superposition theorem and Kurkova’s corollary form
a rigorous basis for the neural network scheme

. The nesting of functions and large data sets make the optimization of
neural networks with respect to their parameters computationally
expensive.

. The iterative “back propagation” scheme improves the computational
efficiency.

. The data can also be processed in minibatches to improve the efficiency
further.

In using neural networks, care must be taken to avoid overfitting, as with
any other ML approach.

. Gradient information can also be used to optimized a neural network.

. Connecting neural networks to Bayes’ theorem leads to the Bayesian
neural network approach.

