An Introduction to Neural Networks

Mark E. Tuckerman

Dept. of Chemistry and Courant Institute of Mathematical Sciences
New York University, 100 Washington Square East, NY 10003
NYU-ECNU Center for Computational Chemistry at NYU Shanghai 200062, China
华东师范大学-纽约大学 计算化学联合研究中心

Neural networks in everyday life...

IBM's Watson computer plays and wins "Jeopardy" in 2011.

.....and after?

Eterni.mi – Create a chatbot of yourself after you're gone from your digital footprint?

Try to "mimic" the brain's neuronal connections

First neuron-based computational model: McCulloch and Pitts (1943), "A logical calculus of the ideas immanent in nervous activity", *Bull. Math. Biophys.*

Kolmogorov Superposition Theorem (1957) – Answers Hilbert's 13th problem (1900)

Given a function $f(x_1,...,x_n)$ of n variables $x_1,...,x_n, x_p \in [0,1]$, f can be represented (Sprecher form) as

$$f(x_1,...,x_n) = \sum_{q=1}^{2n+1} g\left(\sum_{p=1}^n \lambda_p \varphi_q(x_p)\right)$$

 $\lambda_1, ..., \lambda_n > 0, \ \varphi_q(x)$ is monotonically increasing, and $\varphi: [0.1] \to [0,1]$.

The function g(y) is continuous and $g: \mathbb{R}^1 \to \mathbb{R}^1$

Proof (existence but NOT constructive):

Let ε and δ be numbers such that $0 < \varepsilon, \delta < 1$,

consider a set of functions $\varphi_1, \dots, \varphi_{2n+1}$, such that $\exists \gamma : R^1 \to R^1$

such that $\|\gamma\| \le \|f\|$ and such that, for the given set of $\varphi_1, ..., \varphi_{2n+1}$,

$$\left\| f(x_1, ..., x_n) - \sum_{q=1}^{2n+1} \gamma \left(\sum_{p=1}^n \lambda_p \varphi_q(x_p) \right) \right\| \le (1 - \varepsilon) \|f\|, \qquad \|\gamma\| = \delta \|f\|$$

We now define a series of functions

$$\gamma_j, h_j, j=1,2,....\infty$$

$$h_j(x_1,...,x_n) = \sum_{q=1}^{2n+1} \gamma_j \left(\sum_{p=1}^n \lambda_p \varphi_q(x_p) \right)$$

Applying the above result, in an inductive fashion, we have the following series:

$$||f - h_1|| \le (1 - \varepsilon) ||f||, ||\gamma_1|| = \delta ||f||$$

$$\|(f-h_1)-h_2\| \le (1-\varepsilon)\|f-h_1\| \le (1-\varepsilon)^2\|f\|, \quad \|\gamma_2\| = \delta\|f-h_1\| = \delta(1-\varepsilon)\|f\|$$

• •

$$\left\| f - \sum_{j=1}^{r} h_j \right\| \le (1 - \varepsilon)^r \| f \|, \qquad \left\| \gamma_r \right\| = \delta (1 - \varepsilon)^{r-1} \| f \|$$

Let $r \to \infty$,

$$\lim_{r\to\infty} \left\| f - \sum_{j=1}^r h_j \right\| \le \lim_{r\to\infty} (1-\varepsilon)^r \left\| f \right\| = 0, \qquad \lim_{r\to\infty} \left\| \gamma_r \right\| = \lim_{r\to\infty} \delta (1-\varepsilon)^{r-1} \left\| f \right\| = 0$$

$$f(x_1, ..., x_n) = \sum_{j=1}^{\infty} h_j(x_1, ..., x_n)$$

$$= \sum_{j=1}^{\infty} \sum_{q=1}^{2n+1} \gamma_j \left(\sum_{p=1}^n \lambda_p \varphi_q(x_p) \right)$$

$$= \sum_{q=1}^{2n+1} \sum_{j=1}^{\infty} \gamma_j \left(\sum_{p=1}^n \lambda_p \varphi_q(x_p) \right)$$

$$\equiv \sum_{q=1}^{2n+1} g\left(\sum_{p=1}^{n} \lambda_p \varphi_q(x_p)\right) \qquad \text{Q.E.D.}$$

Iterating the Kolmogorov theorem:

$$f(x_1,...,x_n) = \sum_{q=1}^{2n+1} g\left(\sum_{p=1}^n \lambda_p \varphi_q(x_p)\right)$$

$$h_q(x_1,...,x_n) = \sum_{p=1}^{n} \lambda_p \varphi_q(x_p)$$

$$h_q(x_1,...,x_n) = \sum_{r=1}^{2n+1} \gamma_q \left(\sum_{p=1}^n \lambda_p \psi_r(x_p) \right)$$

$$h_r(x_1,...,x_n) = \sum_{p=1}^n \lambda_p \psi_r(x_p)$$

$$h_r(x_1,...,x_n) = \sum_{s=1}^{2n+1} \gamma_r \left(\sum_{p=1}^n \lambda_p \omega_s(x_p) \right)$$

$$f(x_1,...,x_n) = \sum_{q=1}^{2n+1} g\left(\sum_{r=1}^{2n+1} \gamma_q \left(\sum_{s=1}^{2n+1} \gamma_r \left(\sum_{p=1}^n \lambda_p \omega_s(x_p)\right)\right)\right)$$

etc.

Kurkova's Theorem (1991)

V. Kurkova Neural Computation (1991)

Let m be an integer such that $m \ge 2n+1$, and let w_{pq} , p=1,...,n, q=1,...,m be a set of parameters. Then, Kolmogorov's theorem can be restated as

$$f(x_1, ..., x_n) = \sum_{q=1}^{m} g\left(\sum_{p=1}^{n} w_{pq} \varphi_q(x_p)\right)$$

Kurkova's theorem can also be iterated:

$$f(x_1, ..., x_n) = \sum_{q=1}^{m} g\left(\sum_{r=1}^{m'} \gamma_q \left(\sum_{s=1}^{m''} \gamma_r \left(\sum_{p=1}^{n} w_{ps} \omega_s(x_p)\right)\right)\right)$$

Concrete example of a neural network:

$$\omega_{s}(x_{p}) = x_{p} + c_{s}$$

$$a_{s}^{(1)} = \sum_{p=1}^{n} w_{sp}^{(0)} x_{p} + w_{s0}^{(0)}, \qquad z_{s}^{(1)} = h(a_{s}^{(1)})$$

$$a_{r}^{(2)} = \sum_{s=1}^{m'} (w_{rs}^{(1)} z_{s}^{(1)} + w_{r0}^{(1)}), \qquad z_{r}^{(2)} = h(a_{r}^{(2)})$$

$$a_{q}^{(3)} = \sum_{r=1}^{m'} (w_{qr}^{(2)} z_{r}^{(2)} + w_{q0}^{(2)})$$

$$f(x_{1}, ..., x_{n}) = \sum_{q=1}^{m} h(a_{q}^{(3)})$$

h(y) known as an "activation function"

Expanded out and generalized to an arbitrary number K of nestings.

$$f_{\text{NN}}(x_1, \dots, x_n, \mathbf{w}) \equiv f_{\text{NN}}(\mathbf{x}, \mathbf{w})$$

$$= \sum_{j_K=1}^M h \left(\sum_{j_{K-1}=1}^M h \left(\sum_{j_{1}=1}^M h \left(\sum_{p=1}^n x_p w_{pj_1}^0 + w_{0j_1}^0 \right) w_{j_1 j_2}^1 + w_{0j_2}^1 \cdots \right) w_{j_{K-2} j_{K-1}}^{K-1} + w_{0j_K}^{K-1} \right) w_{j_{K-1} j_K}^K + w_{0j_K}^K$$

Schematic/graph representation of a neural network

Examples of activation functions

Sigmoid function:

$$h(x) = \frac{1}{1 + e^{-x}}$$

Rectified linear unit ("ReLu") function:

$$h(x) = \max(0, x)$$
 (not differentiable)

Soft form called "softplus" function:

$$h(x) = \ln(1 + e^x)$$
 (soft, differentiable)

Many other types: see <u>stats.stackexchange.com</u>

Network training

Given M specific values of the function f_{λ} , $\lambda = 1, ..., M$ at specific values $\mathbf{x}^{\lambda} \equiv x_1^{\lambda},, x_n^{\lambda}$ training consists in using this data to fit a set of connection parameters \mathbf{w} .

In order to perform this training, we first set up a regression *cost function* or *error function*:

$$E(\mathbf{w}) = \frac{1}{2M} \sum_{\lambda=1}^{M} \left| f_{NN} \left(\mathbf{x}^{\lambda}; \mathbf{w} \right) - f_{\lambda} \right|^{2}$$

The error function can also include a regularization term:

$$E(\mathbf{w}) = \frac{1}{2M} \sum_{\lambda=1}^{M} \left| f_{NN} \left(\mathbf{x}^{\lambda}; \mathbf{w} \right) - f_{\lambda} \right|^{2} + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

The cost function must then be minimized with respect to w:

$$\frac{\partial E}{\partial \mathbf{w}} = 0$$

Calculation of derivatives needed for network training

$$\frac{\partial E}{\partial w_{jr}^{(l)}} = \sum_{\lambda=1}^{M} \sum_{s=1}^{m^{(l+1)}} \frac{\partial E}{\partial a_s^{(l+1)}(\mathbf{x}^{\lambda})} \frac{\partial a_s^{(l+1)}(\mathbf{x}^{\lambda})}{\partial w_{jr}^{(l)}}$$

$$= \begin{cases}
\sum_{\lambda=1}^{M} \frac{\partial E}{\partial a_r^{(l+1)}(\mathbf{x}^{\lambda})} x_j^{\lambda}, & l = 0, \ j = 1, ..., n \\
\sum_{\lambda=1}^{M} \frac{\partial E}{\partial a_r^{(l+1)}(\mathbf{x}^{\lambda})} h(a_j^{(l)}(\mathbf{x}^{\lambda})), & 0 < l \le K
\end{cases}$$

We can express this as a "backwards propagation" iterative scheme through the layers of the network, using the following rules for the above derivatives:

$$\frac{\partial E}{\partial a^{(K+1)}(\mathbf{x}^{\lambda})} = \frac{\partial E}{\partial f_{NN}(\mathbf{x}^{\lambda}; \mathbf{w})} = \frac{1}{M} (f_{NN}(\mathbf{x}^{\lambda}; \mathbf{w}) - f_{\lambda})$$

$$\frac{\partial E}{\partial a_r^{(l)}(\mathbf{x}^{\lambda})} = \begin{cases}
\sum_{j=1}^{m^{(l+1)}} \frac{\partial E}{\partial a_j^{(l+1)}(\mathbf{x}^{\lambda})} w_{rj}^{(l)}, & l = 0 \\
\sum_{j=1}^{m^{(l+1)}} \frac{\partial E}{\partial a_j^{(l+1)}(\mathbf{x}^{\lambda})} w_{rj}^{(l)} h'(a_r^{(l)}(\mathbf{x}^{\lambda})), & 1 \le l \le K
\end{cases}$$

"Back propagation"

Optimization algorithms

Steepest descent (a.k.a. gradient descent) is based on a first-order ODE:

$$\frac{d\mathbf{w}}{d\tau} = -\frac{\partial E}{\partial \mathbf{w}}$$

Discretize in "time" τ:

$$\mathbf{w}(\tau + \delta \tau) = \mathbf{w}(\tau) - \delta \tau \frac{\partial E}{\partial \mathbf{w}} \bigg|_{\mathbf{w} = \mathbf{w}(\tau)}$$

Conjugate gradient descent:

Local quadratic expansion of $E(\mathbf{w})$ about 0

$$E(\mathbf{w}) \approx \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{H} \mathbf{w} - \mathbf{w}^{\mathrm{T}} \mathbf{F}$$

$$\nabla_{\mathbf{w}} E = 0 \implies \mathbf{H} \mathbf{w} = \mathbf{F}$$

Let \mathbf{w}_* be the solution vector. Let \mathbf{b}_k be vectors such that $\mathbf{b}_i^{\mathrm{T}} H \mathbf{b}_j = \mathbf{b}_i^{\mathrm{T}} H \mathbf{b}_i \delta_{ij}$

$$\mathbf{w}_* = \sum_k \beta_k \mathbf{b}_k$$

$$\mathbf{H}\mathbf{w}_* = \sum_k \beta_k \mathbf{H}\mathbf{b}_k$$

$$\mathbf{b}_j^{\mathrm{T}} \mathbf{H} \mathbf{w}_* = \sum_k \beta_k \mathbf{b}_j^{\mathrm{T}} \mathbf{H} \mathbf{b}_k = \beta_j \mathbf{b}_j^{\mathrm{T}} \mathbf{H} \mathbf{b}_j$$

$$\beta_j = \frac{\mathbf{b}_j^{\mathrm{T}} \mathbf{H} \mathbf{w}_*}{\mathbf{b}_j^{\mathrm{T}} \mathbf{H} \mathbf{b}_j} = \frac{\mathbf{b}_j^{\mathrm{T}} \mathbf{F}}{\mathbf{b}_j^{\mathrm{T}} \mathbf{H} \mathbf{b}_j}$$

Conjugate gradient descent:

$$\mathbf{w}(i+1) = \mathbf{w}(i) + \alpha \frac{\mathbf{d}(i)}{|\mathbf{d}(i)|}$$

$$\mathbf{d}(0) = -\nabla_{\mathbf{w}} E \Big|_{\mathbf{w}(0)}$$

$$\mathbf{d}(i) = -\nabla_{\mathbf{w}} E \Big|_{\mathbf{w}(i)} + \beta \mathbf{d}(i-1)$$

$$\beta = \frac{\mathbf{d}^{\mathrm{T}}(i-1) \cdot \mathbf{H} \cdot \left(\nabla_{\mathbf{w}} E \big|_{\mathbf{w}(i)}\right)}{\mathbf{d}^{\mathrm{T}}(i-1) \cdot \mathbf{H} \cdot \mathbf{d}(i-1)}$$

$$\mathbf{H} \cdot \mathbf{d}(i-1) \approx \frac{1}{\varepsilon} \left[\nabla_{\mathbf{w}} E \Big|_{\mathbf{w}(i) + \varepsilon \mathbf{d}(i-1)} - \nabla_{\mathbf{w}} E \Big|_{\mathbf{w}(i)} \right]$$

Using Langevin dynamics:

Create a probability distribution function of the w parameters:

$$P(\mathbf{w}) = \mathcal{N}^{-1} e^{-\beta E(\mathbf{w})}, \qquad \mathcal{N} = \int d\mathbf{w} \ e^{-\beta E(\mathbf{w})}$$

Sample using overdamped Langevin dynamics with a "temperature" β^{-1}

$$\gamma d\mathbf{w} = -\nabla_{\mathbf{w}} E d\tau + \sqrt{2\beta^{-1}\gamma} d\mathbf{\eta}$$

 η is a vector of Gaussian random numbers with distribution of zero-mean and unit-width.

<u>Low-error algorithm [Matthews and Leimkuhler]:</u>

$$\mathbf{w}(\tau + \delta \tau) = \mathbf{w}(\tau) - \nabla_{\mathbf{w}} E(\mathbf{w}(\tau)) \delta \tau + \sqrt{2\beta^{-1} \gamma \delta \tau} \left[\frac{\mathbf{r}(\tau) + \mathbf{r}(\tau + \delta \tau)}{2} \right]$$

 $\mathbf{r}(\tau)$ and $\mathbf{r}(\tau+\delta\tau)$ are vectors of Gaussian random numbers drawn from a distribution of zero mean and unit width.

Can also write this as a second-order dynamical system:

$$d\mathbf{w} = \mathbf{M}^{-1}\mathbf{p}dt$$

$$d\mathbf{p} = -\nabla_{\mathbf{w}}E(\mathbf{w})dt - \gamma\mathbf{p}dt + \sqrt{2\beta^{-1}\gamma}\mathbf{M}^{1/2}d\mathbf{\eta}$$

Let
$$\mathbf{F} = -\nabla_{\mathbf{w}} E(\mathbf{w}), \qquad \Sigma = \sqrt{2\beta^{-1}\gamma} \mathbf{M}^{1/2}$$

Low-error numerical integrator [Matthews and Leimkuhler (2012)]:

$$\mathbf{p} \leftarrow \mathbf{p} + 0.5 * \Delta t * \mathbf{F};$$

$$\mathbf{w} \leftarrow \mathbf{w} + 0.5 * \Delta t * \mathbf{M}^{-1} \mathbf{p};$$

$$\mathbf{p} \leftarrow \mathbf{p} * e^{-\gamma \Delta t} + \Sigma * \mathbf{R} * \sqrt{(1 - e^{-2\gamma \Delta t}) / 2\gamma};$$

$$\mathbf{w} \leftarrow \mathbf{w} + 0.5 * \Delta t * \mathbf{M}^{-1} \mathbf{p};$$
Update Gradients;
$$\mathbf{p} \leftarrow \mathbf{p} + 0.5 * \Delta t * \mathbf{F};$$

Use of minibatches:

If the dataset if large, the evaluation of $\mathbf{F}(\mathbf{w}) = -\nabla_{\mathbf{w}} E(\mathbf{w})$ can be very expensive.

Define a minibatch of size m < M and a "noisy" cost function and gradient

$$\tilde{E}(\mathbf{w}) = \frac{1}{2m} \sum_{k=1}^{m} \left| f_{NN} \left(\mathbf{x}^{k}; \mathbf{w} \right) - f_{k} \right|^{2}, \qquad \tilde{\mathbf{F}}(\mathbf{w}) = -\nabla_{\mathbf{w}} \tilde{E}(\mathbf{w})$$

Assume the noisy gradient can be written as

$$\tilde{\mathbf{F}}(\mathbf{w}) = \mathbf{F}(\mathbf{w}) + \sqrt{\Sigma(\mathbf{w})} \mathbf{M}^{1/2} \mathbf{R}$$

where $\Sigma(\mathbf{w})$ is the (unknown) covariance matrix of the noisy gradient

Rewrite the stochastic sampling scheme as

$$\mathbf{dw} = \mathbf{M}^{-1}\mathbf{p}\mathbf{d}t$$

$$d\mathbf{p} = \tilde{\mathbf{F}}(\mathbf{w})dt - \sqrt{\Sigma(\mathbf{w})}\mathbf{M}^{1/2}d\mathbf{\eta} - \gamma \mathbf{p}dt + \sqrt{2\beta^{-1}\gamma}\mathbf{M}_{A}^{1/2}d\mathbf{\eta}_{A}$$

- 1. Model $\Sigma(\mathbf{w})$, e.g., $\Sigma(\mathbf{w}) = \sigma \mathbf{I}$
- 2. Run minibatches in parallel and estimate $\Sigma(\mathbf{w})$ from the parallel runs.
- 3. Approximate update algorithms for $\Sigma(\mathbf{w})$ [Leimkuhler etal. *NIPS* (2015)].

Simple Example

We take 10 "synthetic" data points drawn from the function $f(x) = \sin(2\pi x)$ to which random noise is added. We use these to train a network with a single hidden later having M units/nodes:

- M = 1: Insufficient to represent f(x)
- M = 3: Close approximation to f(x)
- M = 10: Overfitting of f(x).

More complicated two-dimensional example

$$f(x, y) = \frac{1}{N_g \sum_{\lambda=1}^{N_g} \left[f_{NN}(x^{\lambda}, y^{\lambda}; \mathbf{w}) - f(x^{\lambda}, y^{\lambda}) \right]^2}$$

- One layer
- 10 nodes
- 10,000 training pts
- 41 parameters
- Steepest descent
- 1,000 validation pts

Minibatch sizes

- Black = 1
- Pink = 10
- Turquoise = 100
- Blue = 1000
- Red = 10,000

More complicated two-dimensional example

$$f(x, y) = \frac{1}{N_g \sum_{\lambda=1}^{N_g} \left[f_{NN}(x^{\lambda}, y^{\lambda}; \mathbf{w}) - f(x^{\lambda}, y^{\lambda}) \right]^2}$$

- · One layer
- 10 nodes
- 10,000 training pts
- 41 parameters
- Conjugate gradient
- 1,000 validation pts

Minibatch sizes

- Black = 1
- Pink = 10
- Turquoise = 100
- Blue = 1000
- Red = 10,000

More complicated two-dimensional example

- Two layers
- 20 nodes/layer
- 10,000 training pts
- 501 parameters
- 1,000 validation pts

Minibatch sizes

- Black = 10,000 CG
- Green = 1,000 CG
- Turquoise = 100
- Blue = 10,000 SD

Network training using gradients

Given M specific values of the function ∇f_{λ} , $\lambda = 1,...,M$ at specific values $x^{\lambda} \equiv x_1^{\lambda},....,x_n^{\lambda}$ training consists in using this data to fit the connection parameters \mathbf{w} .

In order to perform this training, we set up a gradient-based regression cost function:

$$E_{G}(\mathbf{w}) = \frac{1}{2M} \sum_{\lambda=1}^{M} \left| \nabla f_{NN} \left(\mathbf{x}^{\lambda}; \mathbf{w} \right) - \nabla f_{\lambda} \right|^{2}$$

The error function can also include a regularization term:

$$E_G(\mathbf{w}) = \frac{1}{2M} \sum_{\lambda=1}^{M} \left| \nabla f_{NN} \left(\mathbf{x}^{\lambda}; \mathbf{w} \right) - \nabla f_{\lambda} \right|^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

The cost function must then be minimized with respect to w:

$$\nabla_{\mathbf{w}} E_G(\mathbf{w}) = 0$$

Analogous iterative back-propagation schemes can be derived for gradient training

Calculation of input derivatives

Recall our general definition

$$a_{j}^{(l)} = \begin{cases} \sum_{s=1}^{n} w_{js}^{(0)} x_{s} + w_{j0}^{(0)}, & l = 1\\ \sum_{s=1}^{m^{(l-1)}} w_{js}^{(l-1)} h(a_{s}^{(l-1)}) + w_{j0}^{(l-1)}, & l = 2, ..., K \end{cases}$$

$$f(x_1,...,x_n) = \sum_{s=1}^{m^{(K)}} h(a_s^{(K)})$$

$$\frac{\partial a_{j}^{(l)}}{\partial x_{r}} \equiv y_{jr}^{(l)} = \begin{cases} w_{jr}^{(0)}, & l = 1\\ \sum_{s=1}^{m^{(l-1)}} w_{js}^{(l-1)} h'(a_{s}^{(l-1)}) y_{jr}^{(l-1)}, & l > 1 \end{cases}$$

Final output:
$$\frac{\partial f}{\partial x_r} = \sum_{j=1}^{m^{(K)}} h'(a_j^{(K)}) w_j^{(K)} y_{jr}^{(K-1)}$$

Dropout regulation of neural networks

Srivastava et al. J. Mach. Learning Res. (2014)

Let $r^{(l)}$ be a Bernoulli random number

$$\omega_{s}(x_{p}) = r^{(0)}x_{p} + c_{s}$$

$$a_{s}^{(1)} = \sum_{p=1}^{n} w_{sp}^{(0)}x_{p} + w_{s0}^{(0)}, \qquad z_{s}^{(1)} = r^{(1)}h(a_{s}^{(1)})$$

$$a_{r}^{(2)} = \sum_{s=1}^{m''} \left(w_{rs}^{(1)}z_{s}^{(1)} + w_{r0}^{(1)}\right), \qquad z_{r}^{(2)} = r^{(2)}h(a_{r}^{(2)})$$

$$a_{q}^{(3)} = \sum_{r=1}^{m'} \left(w_{qr}^{(2)}z_{r}^{(2)} + w_{q0}^{(2)}\right)$$

$$f(x_{1}, ..., x_{n}) = \sum_{q=1}^{m} h(a_{q}^{(3)})$$

Connection to Bayes' Theorem

Bayes' Theorem:

$$P(\mathbf{w} \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \mathbf{w})p(\mathbf{w})}{p(\mathcal{D})}$$

posterior ∝ likelihood × prior

Take the prior to be a Gaussian of width σ

$$p(\mathbf{w}, \sigma) = \left(\frac{1}{2\pi\sigma^2}\right)^{D/2} e^{-\mathbf{w}^{\mathrm{T}}\mathbf{w}/2\sigma^2}$$

Take the likelihood function to be the Boltzmann distribution of the cost function:

$$P(\mathcal{D} \mid \mathbf{w}, \beta) = \mathcal{N}^{-1}(\beta)e^{-\beta E(\mathbf{w}; \mathcal{D})}, \qquad \mathcal{N}(\beta) = \int d\mathbf{w} \ e^{-\beta E(\mathbf{w}; \mathcal{D})}$$

Connection to Bayes' Theorem

The posterior probability becomes:

$$P(\mathbf{w}, \boldsymbol{\sigma}, \boldsymbol{\beta} \mid \mathcal{D}) = \mathcal{N}^{-1}(\boldsymbol{\beta}) \left(\frac{1}{2\pi\sigma^2}\right)^{D/2} e^{-\frac{\boldsymbol{\beta}}{2M} \sum_{\lambda=1}^{M} \left| f_{NN}(\mathbf{x}^{\lambda}; \mathbf{w}) - f_{\lambda} \right|^2} e^{-\mathbf{w}^{\mathrm{T}} \mathbf{w}/2\sigma^2}$$

If we fix σ and β and take the -log of the posterior, we obtain

$$-\ln P(\mathbf{w}, \boldsymbol{\sigma}, \boldsymbol{\beta} \mid \mathcal{D}) = \frac{\beta}{2M} \sum_{\lambda=1}^{M} \left| f_{NN} \left(\mathbf{x}^{\lambda}; \mathbf{w} \right) - f_{\lambda} \right|^{2} + \frac{1}{2\sigma^{2}} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \text{const} \quad (1)$$

which is just the regularized cost function

We can also consider σ and β as additional parameters to be optimized, in which case, we have

$$-\ln P(\mathbf{w}, \boldsymbol{\sigma}, \boldsymbol{\beta} \mid \mathcal{D}) = \frac{\boldsymbol{\beta}}{2M} \sum_{\lambda=1}^{M} \left| f_{NN} \left(\mathbf{x}^{\lambda}; \mathbf{w} \right) - f_{\lambda} \right|^{2} + \frac{1}{2\sigma^{2}} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

$$+ D \ln(\boldsymbol{\sigma}) + \ln \mathcal{N}(\boldsymbol{\beta})$$
(2)

We do not know $\mathcal{N}(\beta)$ analytically, so the optimization cannot be performed directly.

The following procedure is, therefore, used:

- 1. Begin with an estimate of σ and β .
- 2. Optimize (1) to obtain a solution for \mathbf{w} , denoted \mathbf{w}_{opt} .
- 3. Use \mathbf{w}_{opt} to expand the unregularized cost function to second order:

$$E(\mathbf{w}) = \frac{1}{2M} \sum_{\lambda=1}^{M} \left| f_{NN} \left(\mathbf{x}^{\lambda}; \mathbf{w} \right) - f_{\lambda} \right|^{2}$$

$$\approx E_{0} + \mathbf{b}^{T} (\mathbf{w} - \mathbf{w}_{\text{opt}}) + \frac{1}{2} (\mathbf{w} - \mathbf{w}_{\text{opt}})^{T} \mathbf{A} (\mathbf{w} - \mathbf{w}_{\text{opt}})$$

4. Compute $\mathcal{N}(\beta)$ analytically from the second-order expansion.

$$\mathcal{N}(\beta) = \left(\frac{2\pi}{\beta}\right)^{D/2} \left[\det(\mathbf{A})\right]^{-1/2} e^{\beta^2 \mathbf{b}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{b}/2}$$

5. Substitute into (2) and optimize with respect to σ and β

$$-\ln P(\mathbf{w}, \boldsymbol{\sigma}, \boldsymbol{\beta} \mid \mathcal{D}) = \frac{\beta}{2M} \sum_{\lambda=1}^{M} \left| f_{NN} \left(\mathbf{x}^{\lambda}; \mathbf{w}_{\text{opt}} \right) - f_{\lambda} \right|^{2} + \frac{1}{2\sigma^{2}} \mathbf{w}_{\text{opt}}^{\text{T}} \mathbf{w}_{\text{opt}} + D \ln(\boldsymbol{\sigma}) + \ln \mathcal{N}(\boldsymbol{\beta})$$

6. Repeat from (2) until convergence is reached.

Such an approach is known as a Bayesian neural network.

Conclusions

- 1. Kolmorogov's superposition theorem and Kurkova's corollary form a rigorous basis for the neural network scheme
- 2. The nesting of functions and large data sets make the optimization of neural networks with respect to their parameters computationally expensive.
- 3. The iterative "back propagation" scheme improves the computational efficiency.
- 4. The data can also be processed in minibatches to improve the efficiency further.
- 5. In using neural networks, care must be taken to avoid overfitting, as with any other ML approach.
- 6. Gradient information can also be used to optimized a neural network.
- 7. Connecting neural networks to Bayes' theorem leads to the Bayesian neural network approach.