Quantum Machine Learning

Learning curves, representations, training sets

Anatole von Lilienfeld

"Machine Learning, Quantum Mechanics, and Chemical Compound Space"
By Ramakrishnan and von Lilienfeld
published in: Reviews in Computational Chemistry
edited by Abby L. Parrill and Kenny B. Lipkowitz
Volume 30, Chapter 5, pages 225-256 (2017)

What's more important? The right skill set or the right mind set?

How do we do physics?

1. Guess a law
2. Build a model
3. Predict an outcome
4. If it does not compare to experiment it's wrong

Why do we do (chemical) physics?

Pande et al, J. Phys. Chem B (2013)

OLEDs

Understanding!!!

Structure

P Okamura et al, Nature (2016)

Complex Integrated Nanosystems

Theory to understand chemistry ... to help design experiments

\rightarrow predictions that can be falsified

1. "... when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind." Lord Kelvin

Theory to understand chemistry ... to help design experiments

\rightarrow predictions that can be falsified

1. "... when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind." Lord Kelvin
2. "... we only understand molecules once we predict properties with quantitative accuracy" M. Quack, ETHZ (2000)

TABLE I. History of the accurate calculations of the ground state of helium atom.

Year	Ref.	Type	Energy (a.u.) Mercedes Euklid Mod. 8
1929	Hylleraas (Ref. 2)	Hylleraas (three terms)	-2.90243
1957	Kinoshita (Ref. 6)	Kinoshita type	-2.903 7225
1966	Frankowski and Pekeris (Ref. 7)	Logarithm	-2.903 7243770326
1994	Thakkar and Koga (Ref. 8)	Half-integer	-2.903 7243770341144
1998	Goldman (Ref. 9)	Polynomial	-2.903 724377034119594
1999	Drake (Ref. 10)	Double exponent	-2.903 724377034119596
2002	Sims and Hagstrom (Ref. 12)	Hylleraas-CI	-2.903 7243770341195982999
2002	Drake et al. (Ref. 11)	Triple exponent	-2.903 724377034119508305
2002	Korobov (Ref. 13)	Slater geminal	-2.903 72437703411
2006	Schwartz (Ref. 15)	Logarithm ($\ln (s)$)	$\begin{aligned} & -2.903724377034119 \\ & 1944044400495 \end{aligned}$
2007	This work	ICI new logarithm)	$\begin{aligned} & -2.903724377034119598311159245 \\ & 19440444669690537 \end{aligned}$

Theory to understand chemistry ... to help design experiments

\rightarrow predictions that can be falsified

1. "... when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind." Lord Kelvin
2. "... we only understand molecules once we predict properties with quantitative accuracy" M. Quack, ETHZ (2000)
3. "... It is nice to know that the computer understands the problem. But I would like to understand it too." E. Wigner
\rightarrow compare to experiment (arbiter)

Energy of Hydrogen atom

- Murders in US
- Internet Explorer Market Share

More at
http://www.tylervigen.com/spurious-correlations

Example of spurious correlation for 500 draws of x, y, z with respective means of 10,10,30 and standard deviations 1, 1, and 9. From wikipedia

$$
\begin{aligned}
x, y & \sim N(10,1) \\
z & \sim N(30,9)
\end{aligned}
$$

Correlation must not be used to infer a causal relationship, however if there is a causal relationship there must be a correlation ...
\rightarrow Correlation is a necessary but not sufficient condition.

Dangerous: Humans have cognitive bias ["Thinking, Fast and Slow" Tversky and Kahneman, "Fooled by Randomness", Nassim Taleb]

Spurious correlation can also be due to

1. chance (anything which varies simultaneously will correlate)
2. a common cause
3. identity relationships

correlations (inductive) vs. Iaw (deductive)

Erwin

correlations (inductive) vs. law (deductive)

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \stackrel{\Psi}{\longmapsto} E
$$

Erwin

$H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

correlations (inductive) vs. law (deductive)

$H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

Configuration + Composition \rightarrow Chemical Space

Young-Tae Chang et al C\&E News 93 (12) 39-40 (2015)

Configuration + Composition \rightarrow Chemical Space

Coumarin derivative 450 nm

A Dapoxyl 495 nm

Chalcone derivative

Cy5 (cyanine derivative)
670 nm

Tricarbocyanine derivative
810 nm

Young-Tae Chang et al C\&E News 93 (12) 39-40 (2015)

How many are possible?

Differ in composition and constitution (no conformational isomers)
~120 M
$\sim 15 \mathrm{k}$ are being added on a daily basis

"The greatest shortcoming of the human race is our inability to understand the exponential function"

 Al Bartlett, U of Colorado Boulder
J.-L. Reymond and coworkers, J Am Chem Soc (2009) and ff

Composition

Composition 10 protons

Spatial configuration

Carbon allotropes

J.-L. Reymond and coworkers, J Am Chem Soc (2009) and ff

Conclusions

1. Instantaneous QM quality predictions
2. Learning curves reveal quality of ML model
3. Representations
4. Data sets

Virshup, Yang, Beratan et al J Am Chem Soc (2013)

Kernel Ridge Regression

Kernel

$E^{e s t}(\mathbf{M})=\sum_{i}^{N} \alpha_{i} k\left(\mathbf{M}, \mathbf{M}_{i}\right)$

$$
\text { e.g. } k\left(\mathbf{M}, \mathbf{M}^{\prime}\right)=\exp \left(-\frac{d\left(\mathbf{M}, \mathbf{M}^{\prime}\right)^{2}}{2 \sigma^{2}}\right)
$$

Regression
$\min _{\alpha}\left(\sum_{i}\left(E^{e s t}\left(\mathbf{M}_{i}\right)-E_{i}^{r e f}\right)^{2}+\lambda \sum_{i j} \alpha_{i} \alpha_{j} k\left(\mathbf{M}_{i}, \mathbf{M}_{j}\right)\right)$
Solution

$$
\alpha=(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{E}^{r e f}
$$

From molecule to representation

Molecule
\$p. 8

From molecule to representation

OCCAMS RAZOR
 Now with only one blade

From molecule to Coulomb matrix (CM) to Bag of Bonds (BOB)

$$
M_{I J}= \begin{cases}0.5 Z_{I}^{2.4} & \forall I=J \\ \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} & \forall I \neq J\end{cases}
$$

Molecule
Coulomb matrix (CM)

	O	C	C	H	H	H	H	H	H
O	O	$O C$	$O C$	$O H$					
C	$O C$	C	$C C$	$C H$					
C	$O C$	$C C$	C	$C H$					
H	$O H$	$C H$	$C H$	H	$H H$				
H	$O H$	$C H$	$C H$	$H H$	H	$H H$	$H H$	$H H$	$H H$
H	$O H$	$C H$	$C H$	$H H$	$H H$	H	$H H$	$H H$	$H H$
H	$O H$	$C H$	$C H$	$H H$	$H H$	$H H$	H	$H H$	$H H$
H	$O H$	$C H$	$C H$	$H H$	$H H$	$H H$	$H H$	H	$H H$
H	$O H$	$C H$	$C H$	$H H$	H				

Rupp et al, Phys Rev Lett (2012)

- Unique but overcomplete
- Invariances (Tra\&Rot)
- Compact
- Physical meaning
- Fast
- Simple metrics are not smooth if sorted

Bag of Bonds (BoB)

0
O-bag
0
C-bag
0
H-bag
0
OC-bag
0
OH-bag
0
CC-bag
0
CH-bag
0
HH-bag
0

Hansen et al, J Phys Chem Lett (2015)

- Not unique (homometricity)
- Invariant (Tra\&Rot)
- Compact
- Physical meaning
- Fast
- Simple metrics are smooth

Big Data

Rupp et al, Phys Rev Lett (2012)

Train

QM: ~1000 seconds ML: ~milli seconds

Query

Model(N)

Predict

- Less expensive
- Slow

- Expensive unless fast and automatized
- Inaccessible (too small, too hot, too far, too slow)
- Less expensive
- Slow
- Cheap
- Fast

- Expensive unless fast and automatized
- Inaccessible (too small, too hot, too far, too slow)

Interactive virtual experimenting possible in real time

1. Molecular, materials, biochemical design problems
2. Discover new trends/relationships/rules/fill gaps
3. Enhance teaching, communication, and outreach

Conclusions

1. Instantaneous QM quality predictions
2. Learning curves reveal quality of ML model
3. Representations
4. Data sets

Model quality

$\theta_{0}+\theta_{1} x+\theta_{2} x^{2}$
"Just right"

Size
$\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}$

High bias
(underfit)

High variance (overfit)

Model quality

The bigger the data the better ...

\&Model quality

The bigger the data the better ...

"Learning curves in machine learning" Claudia Perlich, Encyclopedia of Machine Learning (Springer, 2011) pp. 577-580.

Error $\sim a / N^{b}$
K.-R. Mueller et al, Neural Comput (1996)

m
$\rightarrow \log ($ Error $)=\log (a)-b \log (N)$

^Model quality

The bigger the data the better ...

"Learning curves in machine learning" Claudia Perlich,
Encyclopedia of Machine Learning (Springer, 2011) pp. 577-580.

Error $\sim a / N^{b}$
K.-R. Mueller et al, Neural Comput (1996)
$\rightarrow \log ($ Error $)=\log (a)-b \log (N)$


```
Home Archive | About > | For Authors \ | For Referees | Data Policies v
```


Ramakrishnan et al, Scientific Data (2014)

"Enumeration surpasses imagination"
 J.-L. Reymond

Ramakrishnan et al, Scientific Data (2014)

Ramakrishnan et al, Scientific Data (2014)

$$
p_{q}=\sum_{t=1}^{N} c_{t}^{p} K_{q t}
$$

$$
\mathbf{c}^{p}=(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{p}^{r}
$$

$$
\text { We set } \lambda=0 \ldots
$$

$$
\left.\begin{array}{l}
\mathcal{L}=\left(\mathbf{p}^{r}-\mathbf{K} \mathbf{c}^{p}\right)^{\mathrm{T}}\left(\mathbf{p}^{r}-\mathbf{K} \mathbf{c}^{p}\right)+\lambda \mathbf{c}^{p \mathrm{~T}} \mathbf{K} \mathbf{c}^{p} \\
{\left[\mathbf{c}^{p_{1}} \mathbf{c}^{p_{2}} \ldots \mathbf{c}^{p_{n}}\right]=\mathbf{K}^{-1}\left[\mathbf{p}_{1}^{r} \mathbf{p}_{2}^{r} \ldots \mathbf{p}_{n}^{r}\right] \quad \Rightarrow \quad \mathbf{C}=\mathbf{K}^{-1} \mathbf{P}^{r}} \\
k_{i j}
\end{array}\right]=e^{-D_{i j} / \sigma} \begin{aligned}
\frac{1}{2} & \leq k_{i j} \leq 1 \\
\sigma_{\text {opt }} & =D_{i j}^{\max } / \log (2)
\end{aligned}
$$

Tested on $134 \mathrm{k}-\mathrm{N}$ organic molecules taken from:
Ramakrishnan et al, Scientific Data (2014)

Ramakrishnan, OAvL, CHIMIA (2015), arXiv

Tested on 134k-N organic molecules taken from: Ramakrishnan et al, Scientific Data (2014)
*BOB, Hansen et al, submitted (2015)

$$
\begin{aligned}
P^{\mathrm{est}}(\mathbf{M}) & =\sum_{i} \alpha_{i} k\left(\mathbf{M}, \mathbf{M}_{i}\right) \\
\vec{\alpha} & =\mathbf{K}^{-1} \vec{P}^{\mathrm{ref}}
\end{aligned}
$$

$$
\sigma=\max \left\{\left|\mathbf{d}_{i}-\mathbf{d}_{j}\right|\right\} / \log (2)
$$

Error $\sim a /\left(N^{\prime}\right)^{b}$, e.g. $N^{\prime}=N / x$
K.-R. Mueller et al, Neural Comput (1996)
$\rightarrow \log ($ Error $)=\log (a)+3 x-b \log (N)$

Possible reasons for large a and $b \rightarrow 0$

1. No cause and effect relationship (spurious)
2. Bad representation (no physics/uniqueness ...)
3. Bad data (noisy/not representative/ ...)
4. Bad regressor: Underfitting (too rigid)/Overfitting ("crazy" assumptions)/Unconverged (Less coefficients than data points)
5. High dimensionality and curvature

Conclusions

1. Instantaneous QM quality predictions
2. Learning curves reveal quality of ML model
3. Representations
4. Data sets

Kernel Ridge Regression

Kernel

$E^{e s t}(\mathbf{M})=\sum_{i}^{N} \alpha_{i} k\left(\mathbf{M}, \mathbf{M}_{i}\right)$

$$
\text { e.g. } k\left(\mathbf{M}, \mathbf{M}^{\prime}\right)=\exp \left(-\frac{d\left(\mathbf{M}, \mathbf{M}^{\prime}\right)^{2}}{2 \sigma^{2}}\right)
$$

Regression
$\min _{\alpha}\left(\sum_{i}\left(E^{e s t}\left(\mathbf{M}_{i}\right)-E_{i}^{r e f}\right)^{2}+\lambda \sum_{i j} \alpha_{i} \alpha_{j} k\left(\mathbf{M}_{i}, \mathbf{M}_{j}\right)\right)$
Solution

$$
\alpha=(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{E}^{r e f}
$$

i. Let D denote a descriptor, that is, not unique. Then, two systems $H_{1} \neq H_{2}$ exist that differ in excess of the invariants, but they are mapped to the same descriptor value $d, H_{1} \rightarrow d$ and $H_{2} \rightarrow d$.
ii. Because H_{1} and H_{2} differ by more than their property's invariances, they have different wave-functions, $\Psi_{1} \neq \Psi_{2}$, yielding two different observables, $\mathcal{O}_{1}=\left\langle\Psi_{1}\right| \hat{O}\left|\Psi_{1}\right\rangle$ and $\mathcal{O}_{2}=\left\langle\Psi_{2}\right| \hat{O}\left|\Psi_{2}\right\rangle$. Here, we deliberately ingore the obvious exception and special situation of all observables which happen to be degenerate.
iii. A trained statistical model predicts any observable \mathcal{O} solely based on descriptor input d leading to identical predictions $\mathcal{O}_{1}^{\text {pred }}=\mathcal{O}_{2}^{\text {pred }}$. In the limit of infinite training data, these predictions will be exact, implying $\mathcal{O}_{1}=\mathcal{O}_{2}$, in contradiction to (ii).

lack of uniqueness \rightarrow absurd results \rightarrow noise in training

OAvL et al, IJQC (2013)

$$
\log (\text { Error })=a-b \log (N)
$$

lack of uniqueness

uniqueness

lack of uniqueness \rightarrow absurd results \rightarrow noise in training
OAvL et al, IJQC (2013)
Huang, OAvL, J Chem Phys Comm (2016) arxiv.org/abs/1608.06194

J. E. Moussa, Phys Rev Lett (2012)

J. E. Moussa, Phys Rev Lett (2012)

$$
\begin{aligned}
& M_{I J}=\left\{\begin{array}{lll}
0.5 Z_{I}^{2.4} & \forall I=J, & \text { Coulomb-matrix } \\
\frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} & \forall I \neq J . & \bullet \\
\\
& \begin{array}{ll}
\text { unique } \\
& \bullet \\
\text { ronslation }
\end{array} \\
\mathrm{N}=4 & \bullet & \text { symmetry } \\
->3^{*} \mathrm{~N}-6=6 \text { degrees of freedom } & \bullet & \text { diagonalize sort }
\end{array}\right. \\
& \hline
\end{aligned}
$$

Homometric molecules?

Homometric molecules?

Homometric molecules?

Homometric molecules?

Learning curves

$$
\log (\text { Error })=a-b \log (N)
$$

uniqueness

LJ: Lennard-Jones 2-body vdW potential ATM: Axilrod-Teller-Muto 3-body vdW potential
$\log ($ Error $)=a-b \log (N)$ \nearrow

$f^{\text {est }}(x)=\sum \alpha_{i} k(\underbrace{a x_{i}+b}_{\mathrm{M}_{i}}, \underbrace{a x+b}_{\mathrm{M}})$

target similarity

$\log ($ Error $)=a-b \log (N)$
$\mathrm{CM}_{I J}^{(n)}=\frac{Z_{I} Z_{J}}{R_{I J}^{n}}$

Huang, OAvL, J Chem Phys Comm (2016) arxiv.org/abs/1608.06194

BAML

Approach: best M is unique AND good model

bags of UFF contributions

"CM", M. Rupp, et al., PRL, 2012
A. K. Rappe, et al., JACS, 1992
"BoB", K. Hansen, et al., JPCL, 2015
Huang, OAvL, J Chem Phys Comm (2016) arxiv.org/abs/1608.06194

BAML

database: 6 k isomers

Huang, OAvL, J Chem Phys Comm (2016) arxiv.org/abs/1608.06194

BAML

6 k constitutional isomers of $\mathrm{C}_{7} \mathrm{O}_{2} \mathrm{H}_{10}$

BAML

6 k constitutional isomers of $\mathrm{C}_{7} \mathrm{O}_{2} \mathrm{H}_{10}$

BAML

$$
\begin{equation*}
\text { (a) } \quad-\mathbf{M}^{\mathrm{B}}-\mathbf{M}^{\mathrm{A}}-\mathbf{M}^{\mathrm{T}}-\mathbf{M}^{\mathrm{P}}-\mathbf{C M} \quad---\boldsymbol{B o B} \tag{b}
\end{equation*}
$$

6 k constitutional isomers of $\mathrm{C}_{7} \mathrm{O}_{2} \mathrm{H}_{10}$
QM9 (134k molecules)

BAML

QM7b database (size: 7211)
MAE (5k out-of-sample)

	BAML	BoB	SOAP a	CM b	accuracy ${ }^{b}$
E (PBE0)/eV	0.05	0.08	$\mathbf{0 . 0 4}$	0.16	$0.15,0.23,0.09-0.22$
α (PBE0)/ \AA^{3}	0.07	0.09	$\mathbf{0 . 0 5}$	0.11	$0.05-0.27,0.04-0.14$
HOMO (GW) $/ \mathrm{eV}$	$\mathbf{0 . 1 0}$	0.15	0.12	0.16	-
LUMO (GW)/eV	$\mathbf{0 . 1 1}$	0.16	0.12	0.16	-
IP (ZINDO) $/ \mathrm{eV}$	$\mathbf{0 . 1 5}$	0.20	0.19	0.17	$0.20,0.15$
EA (ZINDO) $/ \mathrm{eV}$	$\mathbf{0 . 0 7}$	0.17	0.13	0.11	$0.16,0.11$
$E_{\text {1st }}{ }^{*}$ (ZINDO) $/ \mathrm{eV}$	$\mathbf{0 . 1 3}$	0.21	0.18	$\mathbf{0 . 1 3}$	$0.18,0.21$

${ }^{a}$ S. De, et al., PCCP, 2016
${ }^{b}$ G. Montavon, et al., NJP, 2013

"Prediction errors of molecular machine learning models lower than hybrid DFT errors", F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals, S. Kearnes, P. F. Riley, OAvL arxiv.org/abs/1702.05532

LATM

Atoms + London + Axilrod-Teller-Muto (LATM)

Current performance on QM9

Faber, Christensen, Huang, OAvL, to be submitted (2017)

Representation leading to low a and b

1. Unique
2. Similar to target
3. Efficient
4. ...

More ways to be wrong than right

Conclusions

1. Instantaneous QM quality predictions
2. Learning curves reveal quality of ML model
3. Representations
4. Data sets

Data: Smallest 134k organic molecules in GDB

D J Wales Philosophical Transactions A (2012)

Temperature

$\log (\epsilon)=\log (a)+m \log (N)$

R. Sarmiento-Perez, F. Faber, B. Huang, OAvL, to be submitted (2017)

Temperature

$\log (\epsilon)=\log (a)+m \log (N)$

R. Sarmiento-Perez, F. Faber, B. Huang, OAvL, to be submitted (2017)

Selection bias

Table I. Randomized and GA-optimized out-of-sample relative mean absolute errors (RMAEs) for all properties. All target chemical accuracies are $1 \mathrm{kcal} / \mathrm{mol}$, except for ZPVE, dipole moment and isotropic polarizability, which target accuracies of $10 \mathrm{~cm}^{-1}, 0.1 D$ and $0.1 a_{0}^{3}$ respectively. GA-optimized RMAEs are denoted by P^{GA} while randomly generated training set MAEs are denoted as P^{ML}. Final row corresponds to out-of-sample RMAEs for enthalpy of atomization H using $\Delta_{\mathrm{PM}}^{\mathrm{B} 3 \mathrm{MP}}$-learning.

$P_{\text {rand }}\left(P_{\mathrm{GA}}\right)$	N										
	10	50	100	500		1k		2k		3k	
H	113.0 (31.6)	48.0 (18.3)	33.3 (14.3)	14.8	(7.5)	10.2	(5.8)	6.8	(4.5)	5.1	(3.9)
G	101.8 (28.8)	44.0 (17.7)	31.4 (14.1)	14.3	(7.5)	9.9	(5.6)	6.7	(4.3)	5.0	(3.9)
C_{v}	27.3 (14.5)	18.2 (9.4)	14.6 (7.8)	7.4	(4.0)	5.2	(2.9)	3.4	(2.3)	2.5	(2.0)
ZPVE	10.1 (2.4)	4.3 (1.1)	2.8 (0.8)	0.9	(0.4)	0.6	(0.3)	0.4	(0.2)	0.3	(0.1)
$\left\langle\mathrm{R}^{2}\right\rangle$	168.5 (92.2)	117.0 (44.2)	85.6 (33.2)	35.7	(19.1)	25.7	(15.5)	18.3	(12.7)	14.5	(11.6)
μ	11.3 (8.5)	10.3 (7.7)	9.9 (7.4)	8.4	(6.3)	7.5	(5.7)	6.2	(5.1)	5.2	(4.7)
α	40.8 (16.3)	23.1 (12.0)	18.5 (10.8)	11.8	(7.8)	9.6	(6.5)	7.2	(5.4)	5.8	(4.9)
$\epsilon_{\text {HOMO }}$	13.0 (9.0)	11.2 (8.1)	10.4 (7.3)	7.7	(5.2)	6.3	(4.5)	4.9	(3.8)	4.0	(3.5)
$\epsilon_{\text {LUMO }}$	22.3 (15.8)	18.8 (12.7)	17.0 (11.1)	11.9	(8.0)	9.7	(6.7)	7.4	(5.6)	5.9	(5.0)
gap	24.0 (17.8)	20.8 (15.0)	19.5 (13.5)	14.3	(9.8)	11.8	(8.1)	9.0	(6.8)	7.3	(6.2)
ΔH	6.6 (5.0)	$6.0 \quad$ (4.4)	5.7 (4.1)	4.6	(3.2)	4.1	(2.6)	3.4	(2.1)	3.1	(1.9)

Effective

Errors on 1k QM9 predictions LATM representation Gaussian kernel

B. Huang, OAvL, to be submitted (2017)

Effective

B. Huang, OAvL, to be submitted (2017)

Data affects a and b

1. High dimensional function
2. Redundancy bias
3. Effective dimensionality
4. ...

More ways to be wrong than right

Conclusions

1. Instantaneous QM quality predictions
2. Learning curves reveal quality of ML model
3. Representations
4. Data sets

Conclusions II

Scientific method - proper way to gain knowledge

Inductive (Data)

1. Assume a law
2. Metric
3. Examples
4. Infer
5. New combination

Fast (ms)
Arbitrary reference Automatic improvement

Transferable?
Minimally condensed

Deductive (Laws)

1. Assume a law
2. Approximate
3. Solve
4. Predict
5. New regimes

Slow (depending on approx.)
Approximation dependent Human improvement

Transferable?
Maximally condensed

