Review of Electronic Structure Methods

Mark E．Tuckerman
Dept．of Chemistry and Courant Institute of Mathematical Sciences
New York University， 100 Washington Square East，NY 10003
NYU－ECNU Center for Computational Chemistry at NYU Shanghai 200062，China华 东 师 范 大 学－纽约大学 计算化学联合研究中心

An (un)attainable goal?

$\hat{H} \Psi=E \Psi$

"Big data meets quantum chemistry approximations: The Delta-machine learning approach". Ramakrishnan et al. J. Chem. Theor. Comput. 11, 2087 (2015).
"Machine learning for manybody physics: The case of the Anderson impurity model" Louis-Francois et al. Phys. Rev. B 90155136 (2014).
"Solving the quantum manybody problem with artificial neural networks"
Carleo and Troyer Science 355, 602 (2017).
"Bypassing the Kohn-Sham equations with machine learning", Brockherde et al. Nature Comm. (in review).

The "Universal" Hamiltonian

M Electrons
N Nuclei

$$
\hat{H}=\hat{\hat{C}}_{c}+\hat{Y}_{n}+\hat{V}_{c e}+\hat{V}_{c n}+\hat{V}_{m n}
$$

Operator Definitions:

Electronic:

$$
\begin{aligned}
& \hat{T}_{e}=-\frac{1}{2} \sum_{i=1}^{M} \nabla_{i}^{2} \\
& \hat{V}_{e e}=\sum_{i>j}^{M} \frac{1}{\left|\hat{\mathbf{r}}_{i}-\hat{\mathbf{r}}_{j}\right|}
\end{aligned}
$$

Nuclear:

$$
\begin{gathered}
\hat{T}_{n}=-\frac{1}{2} \sum_{I=1}^{N} \frac{1}{M_{I}} \nabla_{I}^{2} \\
\hat{V}_{n n}=\sum_{I>I}^{N} \frac{Z_{I} Z_{J}}{\left|\hat{\mathbf{R}}_{I}-\hat{\mathbf{R}}_{J}\right|}
\end{gathered}
$$

Coupling:

$$
\hat{V}_{e n}=-\sum_{i=1}^{M} \sum_{l=1}^{N} \frac{Z_{l}}{\left|\frac{\mathbf{r}_{i}}{}-\hat{\mathbf{R}}_{l}\right|}
$$

Molecular energy levels

Electron coordinates
Notation:

$$
\begin{aligned}
& \mathbf{r} \\
= & \mathbf{r}_{1}, \ldots, \mathbf{r}_{M} \\
\mathbf{x} & =\mathbf{r}_{1}, s_{z, 1}, \ldots, \mathbf{r}_{M}, s_{z, M} \\
s_{z, i}=\uparrow, & \alpha,\binom{1}{0} \text { or } \downarrow, \beta,\binom{0}{1}
\end{aligned}
$$

Complete energy level spectrum:

$$
\hat{H} \Psi(\mathbf{x}, \mathbf{R})=E \Psi(\mathbf{x}, \mathbf{R})
$$

$$
\left[\hat{T}_{e}+\hat{T}_{n}+V_{e e}(\hat{\mathbf{r}})+V_{e n}(\hat{\mathbf{r}}, \hat{\mathbf{R}})+V_{n n}(\hat{\mathbf{R}})\right] \Psi(\mathbf{x}, \mathbf{R})=E \Psi(\mathbf{x}, \mathbf{R})
$$

Born-Oppenheimer Approximation

à la W. H. Flygare, Molecular Structure and Dynamics

$$
\text { Mass disparity: } M_{\mathrm{H}^{+}} \approx 2000 m_{e}
$$

Quasi adiabatic separability ansatz for wave function:

$$
\Psi(\mathbf{x}, \mathbf{R})=\varphi(\mathbf{x}, \mathbf{R}) \chi(\mathbf{R})
$$

Schrödinger equation separates if

$$
\nabla_{I} \chi(\mathbf{R}) \gg \nabla_{I} \varphi(\mathbf{x}, \mathbf{R})
$$

Electrons in fixed background nuclear geometry \mathbf{R}

$$
\left[\hat{T}_{e}+\hat{V}_{e e}(\hat{\mathbf{r}})+\hat{V}_{e n}(\hat{\mathbf{r}}, \mathbf{R})\right] \varphi_{\alpha}(\mathbf{x}, \mathbf{R})=\varepsilon_{\alpha}(\mathbf{R}) \varphi_{\alpha}(\mathbf{x}, \mathbf{R})
$$

Nuclei on each electronic hypersurface

$$
\left[\hat{T}_{n}+\varepsilon_{\alpha}(\hat{\mathbf{R}})+\hat{V}_{n n}(\hat{\mathbf{R}})\right] \chi_{v}(\mathbf{R})=E_{v} \chi_{v}(\mathbf{R})
$$

Born-Oppenheimer (electronic) surfaces and nuclear energy levels

Classical nuclear motion on an electronic surface

Consider the ground-state electronic surface $\varepsilon_{0}(\mathbf{R})$

Nuclear Hamiltonian:

$$
\hat{\mathcal{H}}=\hat{T}_{n}+\varepsilon_{0}(\hat{\mathbf{R}})+V_{n n}(\hat{\mathbf{R}})
$$

"Demote" to a classical Hamiltonian:

$$
\mathcal{H}(\mathbf{P}, \mathbf{R})=\sum_{I=1}^{N} \frac{\mathbf{P}_{I}^{2}}{2 M_{I}}+\varepsilon_{0}(\mathbf{R})+V_{n n}(\mathbf{R})
$$

Nuclear motion now given by Hamilton's equations:

$$
\dot{\mathbf{R}}_{I}=\frac{\mathbf{P}_{I}}{M_{I}} \quad \dot{\mathbf{P}}_{I}=-\frac{\partial}{\partial \mathbf{R}_{I}}\left[\varepsilon_{0}(\mathbf{R})+V_{n n}(\mathbf{R})\right]
$$

Hayes and MET
JACS 129, 12172 (2007)

Hellman-Feynman Theorem

Ground-state electronic surface as expectation value:

$$
\begin{gathered}
\varepsilon_{0}(\mathbf{R})=\left\langle\varphi_{0}(\mathbf{R})\right| \hat{H}^{(e)}(\mathbf{R})\left|\varphi_{0}(\mathbf{R})\right\rangle \quad \hat{H}^{(e)}(\mathbf{R})=\hat{T}_{e}+V_{e e}(\hat{\mathbf{r}})+V_{e n}(\hat{\mathbf{r}}, \mathbf{R}) \\
\frac{\partial \varepsilon_{0}}{\partial \mathbf{R}_{I}}=\left\langle\varphi_{0}(\mathbf{R})\right| \frac{\partial \hat{H}^{(e)}}{\partial \mathbf{R}_{I}}\left|\varphi_{0}(\mathbf{R})\right\rangle+\left\langle\frac{\partial \varphi_{0}}{\partial \mathbf{R}_{I}}\right| \hat{H}^{(e)}(\mathbf{R})\left|\varphi_{0}(\mathbf{R})\right\rangle+\left\langle\varphi_{0}(\mathbf{R})\right| \hat{H}^{(e)}(\mathbf{R})\left|\frac{\partial \varphi_{0}}{\partial \mathbf{R}_{I}}\right\rangle \\
\frac{\partial \varepsilon_{0}}{\partial \mathbf{R}_{I}}=\left\langle\varphi_{0}(\mathbf{R})\right| \frac{\partial \hat{H}^{(e)}}{\partial \mathbf{R}_{I}}\left|\varphi_{0}(\mathbf{R})\right\rangle
\end{gathered}
$$

Because $\quad\left\langle\varphi_{0}(\mathbf{R}) \mid \varphi_{0}(\mathbf{R})\right\rangle=1$

$$
\frac{\partial}{\partial \mathbf{R}_{I}}\left\langle\varphi_{0}(\mathbf{R}) \mid \varphi_{0}(\mathbf{R})\right\rangle=0
$$

Hartree-Fock and post Hartree-Fock methods

Antisymmetric product (Slater determinant) ansatz of single-particle orbitals for ground-state wave function:

$$
\varphi_{0}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right)=\left|\begin{array}{ccc}
\psi_{1}\left(\mathbf{x}_{1}\right) & \cdots & \psi_{1}\left(\mathbf{x}_{M}\right) \\
\vdots & \ddots & \vdots \\
\psi_{M}\left(\mathbf{x}_{1}\right) & \cdots & \psi_{M}\left(\mathbf{x}_{M}\right)
\end{array}\right| \equiv \varphi_{\mathrm{HF}}, \quad\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}
$$

Variationally optimizing

$$
\left\langle\varphi_{0}\right| \hat{H}^{(\mathrm{e})}\left|\varphi_{0}\right\rangle=\left\langle\varphi_{\mathrm{HF}}\right| \hat{H}^{(\mathrm{e})}\left|\varphi_{\mathrm{HF}}\right\rangle
$$

with respect to the single-particle orbitals subject to the orthogonality condition, gives the Hartree-Fock equations:
$\left[-\frac{1}{2} \nabla^{2}+V_{e n}(\mathbf{r})+e^{2} \sum_{\ell} \int d \mathbf{x}^{\prime} \frac{\left|\psi_{\ell}\left(\mathbf{x}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right] \psi_{j}(\mathbf{x})-\sum_{\ell \in \mathrm{occ}} \int d \mathbf{x}^{\prime} \frac{\psi_{\ell}^{*}\left(\mathbf{x}^{\prime}\right) \psi_{j}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \psi_{\ell}(\mathbf{x})=\tilde{\varepsilon}_{j} \psi_{j}(\mathbf{x})$
$\tilde{\varepsilon}_{i}$ are the eigenvalues of a Lagrange multiplier matrix for enforcing the orthogonality condition.

Configuration interaction:

$$
\begin{gathered}
\left|\varphi_{0}\right\rangle=c_{0}\left|\varphi_{\mathrm{HF}}\right\rangle+\sum_{r, a} c_{a}^{r}\left|\varphi_{a}^{r}\right\rangle+\sum_{a<b, r<s} c_{a b}^{r s}\left|\varphi_{a b}^{r s}\right\rangle+\sum_{a<b<c, r<s<t} c_{a b c}^{r s t}\left|\varphi_{a b c}^{r s t}\right\rangle+\cdots \\
N
\end{gathered}
$$

Example of excitations for H_{2} :

Single Excitation

$$
\sigma_{\mathrm{g}}^{1} \sigma_{\mathrm{u}}^{* 1}
$$

Double Excitation

$$
\sigma_{u}^{* 2}
$$

In principle exact, but scaling is N ! to reach "exact" results, noting that if a single-particle basis set is used in each of the determinants, then the basis-set limit must be reached.

Coupled cluster theory: $\quad\left|\varphi_{0}\right\rangle=e^{\hat{T}}\left|\varphi_{\mathrm{HF}}\right\rangle$

$$
\begin{aligned}
& \left|\varphi_{0}\right\rangle=\left[1+\hat{T}+\frac{1}{2!} \hat{T}^{2}+\frac{1}{3!} \hat{T}^{3}+\cdots\right]\left|\varphi_{\mathrm{HF}}\right\rangle \\
& \hat{T}=\hat{T}_{1}+\hat{T}_{2}+\hat{T}_{3}+\cdots \quad \hat{T}_{1}\left|\varphi_{\mathrm{HF}}\right\rangle=\sum_{r, a} t_{a}^{r}\left|\varphi_{a}^{r}\right\rangle
\end{aligned}
$$

Full CC and full Cl are closely related. However, when the

$$
\hat{T}_{2}\left|\varphi_{\mathrm{HF}}\right\rangle=\sum_{a<b, r<s} t_{a b}^{r s}\left|\varphi_{a b}^{r s}\right\rangle
$$ CC expansion is truncated, as it usually is, then it is not strictly variational.

$$
\hat{T}_{3}\left|\varphi_{\mathrm{HF}}\right\rangle=\sum_{a<b<c, r<s<t} t_{a b c}^{r s t}\left|\varphi_{a b c}^{r s t}\right\rangle
$$

$$
\begin{aligned}
& \hat{H}^{(e)}\left|\varphi_{0}\right\rangle=\varepsilon_{0}\left|\varphi_{0}\right\rangle \\
& \hat{H}^{(e)} e^{\hat{T}}\left|\varphi_{\mathrm{HF}}\right\rangle=\varepsilon_{0} e^{\hat{T}}\left|\varphi_{\mathrm{HF}}\right\rangle \\
& e^{-\hat{T}} \hat{H}^{(e)} e^{\hat{T}}\left|\varphi_{\mathrm{HF}}\right\rangle=\varepsilon_{0}\left|\varphi_{\mathrm{HF}}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\varphi_{H F}\right| e^{-\hat{T}} \hat{H}^{(e)} e^{\hat{T}}\left|\varphi_{\mathrm{HF}}\right\rangle=\varepsilon_{0} \\
& \left\langle\varphi_{a b c \ldots}^{\text {st... }}\right| e^{-\hat{T}} \hat{H}^{(e)} e^{\hat{T}}\left|\varphi_{\mathrm{HF}}\right\rangle=0
\end{aligned}
$$

Hohenberg-Kohn Theorem

- Two systems with the same number N_{e} of electrons have the same $T_{e}+V_{e e}$. Hence, they are distinguished only by $V_{e n}$.
- Knowledge of $\left|\Psi_{0}\right\rangle$ determines $V_{e n}$.
- Let \mathcal{V} be the set of external potentials such that solution of

$$
\hat{H}_{e} \Psi=\left[\hat{T}_{e}+\hat{V}_{e e}+\hat{V}_{e n}\right] \Psi_{0}=\varepsilon_{0} \Psi_{0}
$$

yields a non-degenerate ground state $\left|\Psi_{0}\right\rangle$.
Collect all such ground state wavefunctions into a set $\boldsymbol{\Psi}$. Each element of this set is associated with a Hamiltonian determined by the external potential.

There exists a 1:1 mapping C such that

Hohenberg-Kohn Theorem

Let $V_{e n}$ and $V_{e n}^{\prime}$ be two elements of \mathcal{V} such that $V_{e n} \neq V_{e n}^{\prime}+$ const Let $\left|\Psi_{0}\right\rangle$ and $\left|\Psi_{0}^{\prime}\right\rangle$ be the associated ground-state wave functions

$$
\begin{align*}
& \left(\hat{T}_{e}+\hat{V}_{e e}+\hat{V}_{e n}\right)\left|\Psi_{0}\right\rangle=\varepsilon_{0}\left|\Psi_{0}\right\rangle \tag{1}\\
& \left(\hat{T}_{e}+\hat{V}_{e e}+\hat{V}_{e n}^{\prime}\right)\left|\Psi_{0}^{\prime}\right\rangle=\varepsilon_{0}^{\prime}\left|\Psi_{0}^{\prime}\right\rangle \tag{2}
\end{align*}
$$

Assume $\left|\Psi_{0}\right\rangle=\left|\Psi_{0}^{\prime}\right\rangle$

$$
\left(\hat{T}_{e}+\hat{V}_{e e}+\hat{V}_{e n}^{\prime}\right)\left|\Psi_{0}\right\rangle=\varepsilon_{0}^{\prime}\left|\Psi_{0}\right\rangle
$$

Subtracting (1) from (2') the two yields

$$
\left(V_{e n}-V_{e n}^{\prime}\right)\left|\Psi_{0}\right\rangle=\left(\varepsilon_{0}-\varepsilon_{0}^{\prime}\right)\left|\Psi_{0}\right\rangle
$$

Implying that $V_{e n}-V_{e n}^{\prime}=\varepsilon_{0}-\varepsilon_{0}^{\prime}=$ const
Hence $\left|\Psi_{0}\right\rangle \neq\left|\Psi_{0}^{\prime}\right\rangle$ and C exists, and similarly C^{-1} exists.

Hohenberg-Kohn Theorem

Inverse map:

$$
C^{-1} \quad: \quad \boldsymbol{\Psi} \rightarrow \mathcal{V}
$$

To prove: $\quad\left|\Psi_{0}\right\rangle \neq\left|\Psi_{0}^{\prime}\right\rangle \Rightarrow V_{e n} \neq V_{e n}^{\prime}$
Assume $V_{e n}=V_{e n}^{\prime}$, then

$$
\begin{aligned}
& \left(\hat{T}_{e}+\hat{V}_{e e}+\hat{V}_{e n}\right)\left|\Psi_{0}\right\rangle=\varepsilon_{0}\left|\Psi_{0}\right\rangle \\
& \left(\hat{T}_{e}+\hat{V}_{e e}+\hat{V}_{e n}\right)\left|\Psi_{0}^{\prime}\right\rangle=\varepsilon_{0}^{\prime}\left|\Psi_{0}^{\prime}\right\rangle
\end{aligned}
$$

These statements cannot both be true because the Hamiltonian is the same. Therefore, $V_{e n} \neq V_{e n}^{\prime}$ and C^{-1} exists.

Hohenberg-Kohn Theorem (part II)

Given an antisymmetric ground state wavefunction from the set $\boldsymbol{\Psi}$, the ground-state density is given by

$$
n_{0}(\mathbf{r})=N_{e} \sum_{s_{1}} \cdots \sum_{s_{N_{e}}} \int d \mathbf{r}_{2} \cdots d \mathbf{r}_{N_{e}}\left|\Psi_{0}\left(\mathbf{r}, s_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N_{e}}\right)\right|^{2}
$$

Knowledge of $n_{0}(\mathbf{r})$ is sufficient to determine $\left|\Psi_{0}\right\rangle$
Let \mathcal{N} be the set of ground state densities obtained from N_{e}-electron ground state wavefunctions in $\boldsymbol{\Psi}$. Then, there exists a 1:1 mapping

$$
D^{-1}: \mathcal{N} \longrightarrow \boldsymbol{\Psi}
$$

The formula for $n(\mathbf{r})$ shows that D exists, however, showing that D^{-1} exists Is less trivial.

Hohenberg-Kohn Theorem (part II)

By variational principle

$$
\varepsilon_{0}=\left\langle\Psi_{0}\right| \hat{H}_{e}\left|\Psi_{0}\right\rangle<\left\langle\Psi_{0}^{\prime}\right| \hat{H}_{e}\left|\Psi_{0}^{\prime}\right\rangle
$$

Note

$$
\begin{aligned}
\left\langle\Psi_{0}^{\prime}\right| \hat{H}_{e}\left|\Psi_{0}^{\prime}\right\rangle & =\left\langle\Psi_{0}^{\prime}\right| \hat{H}_{e}^{\prime}+\hat{V}_{e n}-\hat{V}_{e n}^{\prime}\left|\Psi_{0}^{\prime}\right\rangle \\
& =\varepsilon_{0}^{\prime}+\left\langle\Psi_{0}^{\prime}\right| \hat{V}_{e n}-\hat{V}_{e n}^{\prime}\left|\Psi_{0}^{\prime}\right\rangle \\
& =\varepsilon_{0}^{\prime}+\int d \mathbf{r}\left[V_{e n}(\mathbf{r})-V_{e n}^{\prime}(\mathbf{r})\right] n_{0}^{\prime}(\mathbf{r})
\end{aligned}
$$

Hence,

$$
\varepsilon_{0}<\varepsilon_{0}^{\prime}+\int d \mathbf{r}\left[V_{e n}(\mathbf{r})-V_{e n}^{\prime}(\mathbf{r})\right] n_{0}^{\prime}(\mathbf{r})
$$

Similarly,

$$
\varepsilon_{0}^{\prime}=\left\langle\Psi_{0}^{\prime}\right| \hat{H}_{e}^{\prime}\left|\Psi_{0}^{\prime}\right\rangle<\left\langle\Psi_{0}\right| \hat{H}_{e}^{\prime}\left|\Psi_{0}^{\prime}\right\rangle=\varepsilon_{0}-\int d_{\mathbf{r}}\left[V_{e n}\left(\mathbf{Y}^{\infty}\right)-V_{e n}^{\prime}\left(\mathbf{Y}^{\infty}\right)\right] \boldsymbol{M}_{0}\left(\mathbf{r}^{\infty}\right)
$$

Note:

$$
n_{0}^{\prime}(r)=n_{0}(r) \quad \Rightarrow \varepsilon_{0}+\varepsilon_{0}^{\prime}<\varepsilon_{0}^{\prime}+\varepsilon_{0}
$$

Therefore, $n_{0}(\mathbf{r}) \neq n_{0}^{\prime}(\mathbf{r})$ and D^{-1} exists

Hohenberg-Kohn Theorem

Since C^{-1} and D^{-1} exist, we compose them to give the map

$$
(C D)^{-1}: \mathcal{N} \rightarrow \mathcal{V}
$$

- Knowledge of $n_{0}(r)$ uniquely determines \hat{H}_{e}
- Knowledge of $n_{0}(r)$ uniquely determines ground state properties

Given an operator \hat{O}, the ground-state expectation value

$$
\langle\hat{O}\rangle=\left\langle\Psi_{0}\left[n_{0}\right]\right| \hat{O}\left|\Psi_{0}\left[n_{0}\right]\right\rangle=O\left[n_{0}\right]
$$

is a unique functional of $n_{0}(\mathbf{r})$

Energy functional

$$
\left\langle\hat{H}_{e}\right\rangle=\left\langle\Psi_{0}\left[n_{0}\right]\right| \hat{H}_{e}\left|\Psi_{0}\left[n_{0}\right]\right\rangle=E\left[n_{0}\right]=\varepsilon_{0}
$$

By the variational principle, for some $|\Psi[n]\rangle$ in $\boldsymbol{\Psi}$

$$
E[n]=\langle\Psi[n]| \hat{H}_{e}|\Psi[n]\rangle \geq\left\langle\Psi_{0}\left[n_{0}\right]\right| \hat{H}_{e}\left|\Psi_{0}\left[n_{0}\right]\right\rangle=E\left[n_{0}\right]
$$

Minimization principle

$$
\varepsilon_{0}=E\left[n_{0}\right]=\min _{n(\mathbf{r}) \in \mathcal{N}} E[n]
$$

v-representability: A density $n(\mathbf{r})$ is v-representable if it is associated with the ground-state wave function of some Hamiltonian \hat{H}_{e}
N-representability: A density $n(\mathbf{r})$ is N-representable if it is associated with an antisymmetric wave function, not necessarily associated with a Hamiltonian \hat{H}_{e}

$$
n(\mathbf{r}) \geq 0, \quad \int d \mathbf{r} n(\mathbf{r})=N_{e}
$$

Hohenberg-Kohn theorem only pertains to v-representable densities.

Hohenberg-Kohn functional and the Levy procedure

Let $\left|\Psi_{n_{0}}\right\rangle$ be an antisymmetric wave function that gives $n_{0}(\mathbf{r})$
$\left\langle\Psi_{n_{0}}\right| \hat{T}_{e}+\hat{V}_{e e}\left|\Psi_{n_{0}}\right\rangle+\int d \mathbf{r} n_{0}(\mathbf{r}) V_{e n}(\mathbf{r}) \geq\left\langle\Psi_{0}\right| \hat{T}_{e}+\hat{V}_{e e}\left|\Psi_{0}\right\rangle+\int d \mathbf{r} n_{0}(\mathbf{r}) V_{e n}(\mathbf{r})$
$F[n]$ is called the Hohenberg-Kohn functional, which is universal.

$$
F\left[n_{0}\right]=\min _{\left|\Psi_{n_{0}}\right| \rightarrow n_{0}(\mathbf{r})}\left\langle\Psi_{n_{0}}\right| \hat{T}_{e}+\hat{V}_{e e}\left|\Psi_{n_{0}}\right\rangle
$$

Define:

$$
\tilde{F}[n]=\min _{|\Psi\rangle \rightarrow n(\mathbf{r})}\langle\Psi| \hat{T}_{e}+\hat{V}_{e e}|\Psi\rangle
$$

Since $\tilde{F}\left[n_{0}\right]=F\left[n_{0}\right]$, we reformulate the minimization as

$$
\begin{aligned}
\mathcal{E}_{0} & =\min _{n(\mathbf{r})}\left[\min _{|\Psi\rangle \rightarrow n(\mathbf{r})}\langle\Psi| \hat{T}_{e}+\hat{V}_{e e}|\Psi\rangle+\int d \mathbf{r} n(\mathbf{r}) V_{e n}(\mathbf{r})\right] \\
& =\min _{n(\mathbf{r})}\left[\tilde{F}[n]+\int d \mathbf{r} n(\mathbf{r}) V_{e n}(\mathbf{r})\right]
\end{aligned}
$$

which requires that $n(\mathbf{r})$ only be N-representable.

Kohn-Sham density functional theory

The kinetic energy and exchange-correlation functionals are unknown. In KS theory, we map our fully interacting system onto an equivalent non-interacting system (albeit with a complicated potential) and introduce single-particle orbitals.

Wave function ansatz:

$$
\varphi_{0}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right)=\left|\begin{array}{ccc}
\psi_{1}\left(\mathbf{x}_{1}\right) & \cdots & \psi_{1}\left(\mathbf{x}_{M}\right) \\
\vdots & \ddots & \vdots \\
\psi_{M}\left(\mathbf{x}_{1}\right) & \cdots & \psi_{M}\left(\mathbf{x}_{M}\right)
\end{array}\right|
$$

Single-particle orbitals: $\quad \psi_{i}(\mathbf{x}) \quad\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$

Electron density:

$$
n(\mathbf{r})=M \sum_{s_{1}} \cdots \sum_{s_{M}} \int d \mathbf{r}_{2} \cdots d \mathbf{r}_{M}\left|\varphi_{0}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right)\right|^{2}=\sum_{i=1}^{M} \sum_{s_{z}=-1 / 2}^{1 / 2}\left|\psi_{i}(\mathbf{x})\right|^{2}
$$

Kohn-Sham density functional theory

Now, at least the kinetic energy is known. The total energy functional of KS theory is:

$$
E[\{\psi\}, \mathbf{R}]=T_{s}[\{\psi\}]+E_{H}[n]+E_{x c}[n]+E_{e n}[n, \mathbf{R}]
$$

Energy definitions:

$$
\begin{gathered}
T_{s}[\{\psi\}]=-\frac{1}{2} \sum_{i}\left\langle\psi_{i}\right| \nabla^{2}\left|\psi_{i}\right\rangle \quad E_{H}[n]=\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
E_{e n}[n, \mathbf{R}]=-\sum_{I} Z_{I} \int d \mathbf{r} \frac{n(\mathbf{r})}{\left|\mathbf{r}-\mathbf{R}_{I}\right|}
\end{gathered}
$$

Ground-state energy via constrained minimization

$$
\varepsilon_{0}(\mathbf{R})=\min _{\{\psi\}}\left[E[\{\psi\}, \mathbf{R}]-\sum_{i, j} \lambda_{i j}\left(\left\langle\psi_{i} \mid \psi_{j}\right\rangle-\delta_{i j}\right)\right]
$$

Kohn-Sham equations (ε_{i} are eigenvalues of $\lambda_{i j}$)

$$
\left[-\frac{1}{2} \nabla^{2}+V_{K S}(\mathbf{r})\right] \psi_{i}(\mathbf{r})=\varepsilon_{i} \psi_{i}(\mathbf{r}) \quad V_{K S}(\mathbf{r})=\frac{\delta}{\delta n(\mathbf{r})}\left(E_{H}+E_{x c}+E_{e n}\right)
$$

Approximating exchange and correlation

Local density approximation for exchange: Consider an ideal electron gas in a periodic cubic box of side L and volume $V=L^{3}$. The single particle eigenfunctions and energies are

$$
\psi_{\mathbf{n} m}(\mathbf{x})=\frac{1}{\sqrt{V}} e^{2 \pi \mathrm{in} \cdot \mathbf{r} / L} \sigma_{m}\left(s_{z}\right), \quad \varepsilon_{\mathbf{n}}=\frac{2 \pi^{2}}{L^{2}}|\mathbf{n}|^{2}
$$

Exchange energy:

$$
E_{x}=-\frac{1}{4} \int d \mathbf{r} d \mathbf{r}^{\prime} \frac{\left|\rho_{1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Single-particle density matrix:

$$
\rho_{1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{S_{z}, S_{z}^{\prime}} \sum_{m} \sum_{\mathbf{n}} \psi_{\mathbf{n} m}(\mathbf{x}) \psi_{\mathbf{n} m}^{*}\left(\mathbf{x}^{\prime}\right) \theta\left(\varepsilon_{F}-\varepsilon_{\mathbf{n}}\right)
$$

Evaluate in the thermodynamic limit:

$$
E_{x}=-\frac{3}{4}\left(\frac{3}{\pi}\right)^{1 / 3} V n^{4 / 3}=C_{x} V n^{4 / 3}
$$

As a functional of spatially varying density $n(\mathbf{r})$

$$
E_{x}[n]=C_{x} \int d \mathbf{r} n^{4 / 3}(\mathbf{r})
$$

Approximating exchange and correlation

Generalized gradient approximation:

$$
E_{x c}[n]=\int d \mathbf{r} f(n(\mathbf{r}), \nabla n(\mathbf{r}))
$$

Becke exchange (1988):

$$
E_{x}[n]=E_{x}^{\mathrm{LDA}}[n]-\beta \int d \mathbf{r} n^{4 / 3}(\mathbf{r}) \frac{x^{2}}{1+6 \beta x \sinh ^{-1} x}, \quad x=\frac{|\nabla n(\mathbf{r})|}{n^{4 / 3}(\mathbf{r})}
$$

Asymptotic behavior:

$$
n(r) \sim e^{-a r} \quad \Rightarrow \quad E_{x} \sim-\frac{1}{r}
$$

General strategies:

- Fit parameters to thermochemical properties of particular sets of molecules.
- Determine based on known properties of exchange E_{xc} functional, e.g., PW91, PBE, ...

Radial distribution functions for BLYP Water

H. -S. Lee and MET, JPCA 110, 549 (2006)
H. -S. Lee and MET JCP 125, 154507 (2006).
H. -S. Lee and MET JCP 126, 164501 (2007).
Z. Ma and MET JCP 137, 044506 (2012).

Neutron: Soper, et. al. JCP 106, 247 (1997)
X-ray: Hura, et. al. Chem. Phys. 113, 9140 (2000)

Grid $=75^{3}, \quad t=60 \mathrm{ps}$
Ensemble: NVT, $300 \mathrm{~K}, \mu=500$ au

Exp. Data from A. K. Soper
J. Phys. Condens. Matter 19, 3352 (2007)

Theor. Data from Lee and Tuckerman
J. Chem. Phys. 125, 154507 (2006).

Functional = BLYP
Converged DVR basis set
NPT calculations give a density of $0.92 \mathrm{~g} / \mathrm{cm}^{3}$
Z. Ma, Y. Zhang, MET JCP (2012).

From Medders et al. JCTC (2014)

Approximating exchange and correlation

Meta-generalized gradient approximation:

$$
E_{x c}[n, \tau]=\int d \mathbf{r} f\left(n(\mathbf{r}), \nabla n(\mathbf{r}), \nabla^{2} n(\mathbf{r}), \tau(\mathbf{r})\right)
$$

where the kinetic energy density is $\quad \tau(\mathbf{r})=\sum_{i=1}^{M} \sum_{s_{z}=-1 / 2}^{1 / 2}\left|\nabla \psi_{i}(\mathbf{x})\right|^{2}$

Example: SCAN functional of Perdew and coworkers:
Nature Chem. 8, 831 (2016).

Approximating exchange and correlation

Hybrid functionals:

$$
\begin{aligned}
& E_{x c}[n,\{\psi\}]=\alpha E_{x}^{\mathrm{HF}}[\{\psi\}]+(1-\alpha) E_{x}^{\mathrm{DFT}}[n]+E_{c}^{\mathrm{DFT}}[n] \\
& E_{x}^{H F}=-\frac{1}{4} \sum_{j, \ell \in \mathrm{coc}} \int d \mathbf{x} d \mathbf{x}^{\prime} \frac{\psi_{\ell}(\mathbf{x}) \psi_{\ell}^{*}\left(\mathbf{x}^{\prime}\right) \psi_{j}\left(\mathbf{x}^{\prime}\right) \psi_{j}^{*}(\mathbf{x})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
\end{aligned}
$$

Most well known examples include B3LYP, PBE0, HSE (range-separated), M-yy family.
Including partial exact correlation (within RPA) [see e.g. Ren et al. J. Mat.Sci. (2012), which also discusses the connection to coupled cluster theory]:

$$
\begin{gathered}
E_{c}^{\mathrm{RPA}}=\frac{1}{2 \pi} \int_{0}^{\infty} d \omega \int d \mathbf{x} d \mathbf{x}^{\prime}\left[\ln \left(1-\frac{\chi^{0}\left(\mathbf{x}, \mathbf{x}^{\prime} ; i \omega\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right)+\frac{\chi^{0}\left(\mathbf{x}, \mathbf{x}^{\prime} ; i \omega\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right] \\
\chi^{0}\left(x, x^{\prime} ; i \omega\right)=\sum_{j, l} \frac{\left(f_{j}-f_{l}\right) \psi_{\ell}(\mathbf{x}) \psi_{\ell}^{*}\left(\mathbf{x}^{\prime}\right) \psi_{j}\left(\mathbf{x}^{\prime}\right) \psi_{j}^{* *}(\mathbf{x})}{\tilde{\varepsilon}_{j}-\tilde{\varepsilon}_{l}-i \omega}
\end{gathered}
$$

Approximating DFT: Jacob's Ladder

Hartree World

Including dispersion interactions

Weak dispersion forces are poorly described within the majority of DFT approximations.
Several techniques exist for including dispersion:

1. As an empirical a posteriori correction:

$$
E_{e n}[n, \mathbf{R}]=\int d \mathbf{r} n(\mathbf{r}) v_{e n}(\mathbf{r}, \mathbf{R})+U_{\mathrm{disp}}(\mathbf{R})
$$

e.g., Grimme's D2, Grimme's D3,....
2. As an a posteriori self-consistent correction:

$$
E_{e n}[n, \mathbf{R}]=\int d \mathbf{r} n(\mathbf{r}) v_{e n}(\mathbf{r}, \mathbf{R})+U_{\mathrm{disp}}[n, \mathbf{R}]
$$

e.g., Tkatchenko-Scheffler [Phys. Rev. Lett. 102, 073005 (2009)].
3. Inclusion via additional 1-electron potential in $v_{\mathrm{en}}(\mathbf{r}, \mathbf{R})$, e.g., the DCACP method [von Lilienfeld et al. Phys. Rev. Lett. 93, 153004 (2004)].
4. Build into $E_{\mathrm{xc}}[n]$, e.g., Dion et al. Phys.Rev.Lett. 92, 246401 (2004) and implementation by Soler et al. Phys. Rev. Lett. 103095102 (2009).

From Marsalek and Markland J. Phys. Chem. Lett. 8, 1545 (2017).

Predicted crystal structures

Polymorph	Coumarin \mathbf{I}^{8}	Coumarin $\mathbf{I I}^{\text {a }}$	Coumarin III $^{\text {a }}$	Coumarin $\mathbf{I V}^{\text {a }}$	Coumarin $\mathbf{V}^{\text {b }}$
Space group	Pca ${ }_{1}$	$P 2{ }_{1}$	$P 2{ }_{2}{ }_{1}{ }_{1}$	$P 22_{1} 2_{1}$	$P 22_{12} 2_{1}$
$a(\AA)$	15.5023(11)	3.980	17.066	24.722	4.868
b (\AA)	5.6630(4)	15.291	6.038	5.994	6.882
$c(\AA)$	7.9102(6)	5.858	13.888	14.310	20.851
$\beta\left({ }^{\circ}\right)$	90	85.76	90	90	90
$V\left(\AA^{3}\right)$	694.4	355.5	1431.0	2120.5	698.4
Z, Z^{\prime}	4, 1	2, 1	8, 2	12, 3	4, 1

Performance of different DFT functionals in ranking the polymorphs

Periodic boundary conditions and Bloch's Theorem

If we impose periodic bondary conditions on the system, then we impose periodicity on the potential appearing in the Schrödinger equation.

Let $\mathbf{S}=(n, l, m) L$, then

$$
V(\mathbf{r})=V(\mathbf{r}+\mathbf{S})
$$

Schrödinger equation:

$$
H(\mathbf{r}) \psi(\mathbf{r})=\left[-\frac{1}{2} \nabla^{2}+V(\mathbf{r})\right] \psi(\mathbf{r})=\varepsilon \psi(\mathbf{r})
$$

Periodic boundary conditions and Bloch's Theorem

Define a lattice translation operator T_{S} by

$$
T_{\mathbf{S}} \psi(\mathbf{r})=\psi(\mathbf{r}+\mathbf{S})
$$

Because V is periodic, so is the Hamiltonian: $H(\mathbf{r}+\mathbf{S})=H(\mathbf{r})$
Consequently,

$$
\begin{aligned}
& {\left[H(\mathbf{r}), T_{\mathrm{s}}\right] \psi(\mathbf{r})=\left(H(\mathbf{r}) T_{\mathrm{S}}-T_{\mathbf{s}} H(\mathbf{r})\right) \psi(\mathbf{r})} \\
& =H(\mathbf{r}) \psi(\mathbf{r}+\mathbf{S})-H(\mathbf{r}+\mathbf{S}) T_{\mathbf{S}} \psi(\mathbf{r}) \\
& =H(\mathbf{r}) \psi(\mathbf{r}+\mathbf{S})-H(\mathbf{r}) \psi(\mathbf{r}+\mathbf{S}) \\
& =0 \\
& {\left[H(\mathbf{r}), T_{\mathrm{s}}\right]=0}
\end{aligned}
$$

Therefore, $\psi(\mathrm{r})$ is also an eigenstate of $T_{\mathbf{S}}$

$$
\begin{aligned}
& H \psi(\mathbf{r})=\varepsilon \psi(\mathbf{r}) \\
& T_{\mathbf{s}} \psi(\mathbf{r})=\lambda(\mathbf{S}) \psi(\mathbf{r})
\end{aligned}
$$

Periodic boundary conditions and Bloch's theorem

Now

$$
T_{\mathrm{S}} T_{\mathbf{S}^{\prime}}=T_{\mathbf{S}^{\prime}} T_{\mathrm{S}}=T_{\mathbf{S}+\mathbf{S}^{\prime}}
$$

which means

$$
\lambda(\mathbf{S}) \lambda\left(\mathbf{S}^{\prime}\right)=\lambda\left(\mathbf{S}+\mathbf{S}^{\prime}\right)
$$

We will show that $\lambda(\mathbf{S})$ must be of the form

$$
\lambda(\mathbf{S})=e^{i \mathbf{k} \cdot \mathbf{S}}
$$

where

$$
\mathbf{k}=x_{1} \mathbf{g}_{1}+x_{2} \mathbf{g}_{2}+x_{3} \mathbf{g}_{3}
$$

The reciprocal lattice vectors satisfy

$$
\mathbf{g}_{i} \bullet \mathbf{a}_{j}=2 \pi \delta_{i j}
$$

Periodic boundary conditions and Bloch's theorem

Take as an ansatz

$$
\psi(\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} u(\mathbf{r})
$$

where $u(\mathbf{r})$ is a strictly periodic function.

$$
\begin{aligned}
& u(\mathbf{r})= e^{-i \mathbf{k} \cdot \mathbf{r}} \psi(\mathbf{r}) \\
& \begin{aligned}
u(\mathbf{r}+\mathbf{S}) & =e^{-i \mathbf{k} \cdot(\mathbf{r}+\mathbf{S})} \psi(\mathbf{r}+\mathbf{S}) \\
& =e^{-i \mathbf{k} \cdot \mathbf{r}} e^{-i \mathbf{k} \cdot \mathbf{S}} T_{S} \psi(\mathbf{r}) \\
& =e^{-i \mathbf{k} \cdot \mathbf{r}} e^{-i \mathbf{k} \cdot \mathbf{S}} e^{i \mathbf{k} \cdot \mathbf{S}} \psi(\mathbf{r}) \\
& =e^{-i \mathbf{k} \cdot \mathbf{r}} \psi(\mathbf{r}) \\
& =u(\mathbf{r})
\end{aligned}
\end{aligned}
$$

which justifies our ansatz.

