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Ĥ E   ˆ( ), , ( ),nE n OR r
ML 

An (un)attainable goal? 

“Big data meets quantum chemistry approximations:  The Delta-machine learning approach”. 

Ramakrishnan et al. J. Chem. Theor. Comput. 11, 2087 (2015). 

 

“Machine learning for manybody physics:  The case of the Anderson impurity model” 

Louis-Francois et al. Phys. Rev. B 90 155136 (2014). 

 

“Solving the quantum manybody problem with artificial neural networks”    

Carleo and Troyer Science 355, 602 (2017). 

 

“Bypassing the Kohn-Sham equations with machine learning”, Brockherde et al. Nature Comm. (in review). 



The “Universal” Hamiltonian 
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Operator Definitions: 

Electronic: Nuclear: 

Coupling: 



Molecular energy levels 

Complete energy level spectrum: 
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Notation: 

Electron coordinates Nuclear coordinates 

ˆ ˆ ˆ ˆˆ ˆ( ) ( , ) ( ) ( , ) ( , )e n ee en nnT T V V V E       
 

r r R R x R x R

,

1 0
,  ,     or   ,  ,  

0 1
z is  

   
    

   



Born-Oppenheimer Approximation 

H
Mass disparity:  2000 eM m 

Quasi adiabatic separability ansatz for wave function: 
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Schrödinger equation separates if  

( ) ( , )I I  R x R .   .   . 




ˆ ˆ ˆˆ ˆ( ) ( , ) ( , ) ( ) ( , )e ee enT V V        
 

r r R x R R x RElectrons in fixed back- 

ground nuclear geometry R 
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hypersurface 

 à la W. H. Flygare, Molecular Structure and Dynamics 



ε0 

ε2 

ε1 (no bound levels) 

 

R

( )n R

Born-Oppenheimer (electronic) surfaces and nuclear energy levels 

Vibrations 

Rotations 



Classical nuclear motion on an electronic surface 

Consider the ground-state electronic surface  
0 ( ) R

Nuclear Hamiltonian: 

0
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“Demote” to a classical Hamiltonian: 

2

0

1

( , ) ( ) ( )
2

N
I

nn

I I

V
M




  
P

P R R RH

Nuclear motion now given by Hamilton’s equations: 
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Classical nuclei 

        (R,P) 

Quantum electrons 
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1,3-cyclohexadiene 

Hayes and MET  

JACS 129, 12172 (2007) 



Hellman-Feynman Theorem 

Ground-state electronic surface as expectation value: 
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Hartree-Fock and post Hartree-Fock methods 
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Antisymmetric product (Slater determinant) ansatz of single-particle orbitals  

for ground-state wave function: 

(e) (e)

0 0 HF HF
ˆ ˆH H   

Variationally optimizing 

with respect to the single-particle orbitals subject to the orthogonality condition,  

gives the Hartree-Fock equations: 
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 .i are the eigenvalues of a Lagrange multiplier matrix for enforcing the orthogonality condition



Configuration interaction: 

0 0 HF

, , ,
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N                  N(N-1)                       N(N-1)(N-2) 

Example of excitations for H2: 

In principle exact, but scaling is N! to reach “exact” results, noting that if a 

single-particle basis set is used in each of the determinants, then the basis-set 

limit must be reached.  



Coupled cluster theory: 
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Full CC and full CI are closely  

related.  However, when the  

CC expansion is truncated, as it 

usually is, then it is not strictly  

variational. 
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Hohenberg-Kohn Theorem 

• Two systems with the same number Ne of electrons have the same 

   Te + Vee.  Hence, they are distinguished only by Ven . 

 

• Knowledge of            determines Ven. 

 
• Let V be the set of external potentials such that solution of  

 

 

 

 yields a non-degenerate ground state          . 

  

 Collect all such ground state wavefunctions into a set Ψ.  Each  

 element of this set is associated with a Hamiltonian determined by the external 

 potential. 

  

 There exists a 1:1 mapping C such that 
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Hohenberg-Kohn Theorem 

Let  and  be two elements of  such that  consten en en enV V V V  

0 0Let  and  be the associated ground-state wave functions 
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Subtracting (1) from (2’) the two yields 

   0 0 0 0en enV V       

0 0Implying that  consten enV V      
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0 0Hence  and  exists, and similarly  exists.C C  



Hohenberg-Kohn Theorem 

Inverse map: 

1    :    C Ψ

0 0     en enV V     To prove: 

Assume    ,en enV V  then 
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These statements cannot both be true because the Hamiltonian is the same.  Therefore, 
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Hohenberg-Kohn Theorem (part II) 

Given an antisymmetric ground state wavefunction from the set Ψ, the  

ground-state density is given by 

1
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Let N be the set of ground state densities obtained from Ne-electron ground 

state wavefunctions in Ψ.  Then, there exists a 1:1 mapping 

D : Ψ            N  

The formula for n(r) shows that D exists, however, showing that D-1 exists 

Is less trivial. 

D −1  :  N             Ψ 

0 0Knowledge of ( ) is sufficient to determine n r



Hohenberg-Kohn Theorem (part II) 

By variational principle 
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Hohenberg-Kohn Theorem 

1 1Since  and  exist, we compose them to give the map C D 

1( ) :   CD  

0
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0Knowledge of ( ) uniquely determines ground state propertiesn r

ˆGiven an operator ,  the ground-state expectation valueO
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Energy functional 
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v-representability:  A density n(r) is v-representable if it is associated with the ground-state 

wave function of some Hamiltonian Ĥe 

N-representability:  A density n(r) is N-representable if it is associated with an  

antisymmetric wave function, not necessarily associated with a Hamiltonian Ĥe 

( ) 0,        ( ) en d n N r r r

Hohenberg-Kohn theorem only pertains to v-representable densities. 



Hohenberg-Kohn functional and the Levy procedure 
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F[n] is called the Hohenberg-Kohn functional, which is universal. 
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which requires that n(r) only be N-representable. 



Kohn-Sham density functional theory 

Wave function ansatz: 
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Single-particle orbitals:   ( )     i i j ij   x

Electron density: 

The kinetic energy and exchange-correlation functionals are unknown.  In KS theory, 

we map our fully interacting system onto an equivalent non-interacting system (albeit with 

a complicated potential) and introduce single-particle orbitals.   



Kohn-Sham density functional theory 

Now, at least the kinetic energy is known.  The total energy functional of KS theory is: 
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Energy definitions: 

Ground-state energy via constrained minimization 

Kohn-Sham equations  (   are eigenvalues of )i ij 



Approximating exchange and correlation 

Local density approximation for exchange:  Consider an ideal electron gas in a periodic 

cubic box of side L and volume V=L3.   The single particle eigenfunctions and energies are 
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As a functional of spatially varying density n(r) 
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Approximating exchange and correlation  

Generalized gradient approximation: 

 [ ]  ( ), ( )xcE n d f n n  r r r

Becke exchange (1988): 
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Asymptotic behavior: 
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General strategies: 

•  Fit parameters to thermochemical properties of particular sets of molecules. 

 

•  Determine based on known properties of exchange Exc functional, e.g., PW91, PBE,…  



Radial distribution functions for BLYP Water 

DVR 

Neutron 

X-ray 

H. –S. Lee and MET, JPCA 110, 549 (2006) 

H. –S. Lee and MET JCP 125, 154507 (2006). 

H. –S. Lee and MET JCP 126, 164501 (2007). 

Z. Ma and MET         JCP 137, 044506 (2012). 

Neutron:  Soper, et. al. JCP 106, 247 (1997) 

X-ray: Hura, et. al. Chem. Phys. 113, 9140 (2000) 

 

Grid = 753,  t =60 ps  

Ensemble:  NVT, 300 K, μ = 500 au 

r(Å) 



Exp. Data from A. K. Soper 

J. Phys. Condens. Matter 19, 3352 (2007) 

 

Theor. Data from Lee and Tuckerman 

J. Chem. Phys. 125, 154507 (2006). 

Functional = BLYP 

Converged DVR basis set 

 

NPT calculations give a density of 

0.92 g/cm3 

Z. Ma, Y. Zhang, MET JCP (2012). 

From Medders et al. JCTC (2014) 



Approximating exchange and correlation  

Meta-generalized gradient approximation: 
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Example:  SCAN functional of   

Perdew and coworkers:  

Nature Chem. 8, 831 (2016). 



Approximating exchange and correlation  

Hybrid functionals: 

HF DFT DFT[ ,{ }] [{ }] (1 ) [ ] [ ]xc x x cE n E E n E n      

Most well known examples include B3LYP, PBE0, HSE (range-separated), M-yy family.  
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Including partial exact correlation (within RPA) [see e.g. Ren et al. J. Mat.Sci. (2012),  

which also discusses the connection to coupled cluster theory]: 
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, BLYP 

, PBE0 

Approximating DFT:   

Jacob’s Ladder 



Including dispersion interactions 

Weak dispersion forces are poorly described within the majority of DFT approximations. 

Several techniques exist for including dispersion: 

1. As an empirical a posteriori correction: 

disp[ , ]  ( ) ( , ) ( )en enE n d n v U R r r r R R

e.g., Grimme’s D2, Grimme’s D3,…. 

2.  As an a posteriori self-consistent correction: 

 

 

 

      e.g., Tkatchenko-Scheffler [Phys. Rev. Lett. 102, 073005 (2009)]. 

 

3.   Inclusion via additional 1-electron potential in ven(r,R), e.g., the 

      DCACP method [von Lilienfeld et al. Phys. Rev. Lett. 93, 153004 (2004)]. 

 

4. Build into Exc[n], e.g., Dion et al. Phys.Rev.Lett. 92, 246401 (2004) and implementation  

       by Soler et al. Phys. Rev. Lett. 103 095102 (2009). 

disp[ , ]  ( ) ( , ) [ , ]en enE n d n v U n R r r r R R



From Marsalek and Markland J. Phys. Chem. Lett. 8, 1545 (2017). 



A combined theoretical/experimental study of polymorphs of coumarin 

A. Shtukenberg et al.  Chem. Sci. (accepted -- online) 

Coumarin II  

(Opaque) 

Coumarin IV  

(Blades) 

Coumarin V 

Coumarin III  

(Needles) 

Phase ΔG (rel. to I in kJ/mol) 

0.19 

0.26 

0.20 

~0.84 

All polymorphs are metastable and 

convert to I within minutes. Can be 

stabilized by 10-30 % Canada balsam. 



Predicted crystal structures 

Coumarin I            Coumarin II                Coumarin III                      Coumarin IV               Coumarin V 



Performance of different DFT  

functionals in ranking the polymorphs 



Periodic boundary conditions and Bloch’s Theorem 

If we impose periodic bondary conditions on the system, then we impose periodicity 

on the potential appearing in the Schrödinger equation. 

L 

Let S = (n,l,m)L, then 

( ) ( )V V r r S

Schrödinger equation: 
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Periodic boundary conditions and Bloch’s Theorem 

Define a lattice translation operator TS by 

( ) ( )T  S r r S

Because V is periodic, so is the Hamiltonian: ( ) ( )H H r S r

Consequently,    
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Therefore, ψ(r) is also an eigenstate of TS 
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Periodic boundary conditions and Bloch’s theorem 

Now 

T T T T T   S S S S S S

which means 
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We will show that λ(S) must be of the form 

( ) ie  k SS

where  
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The reciprocal lattice vectors satisfy 
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Periodic boundary conditions and Bloch’s theorem 

Take as an ansatz 

( ) ( )ie u  k rr r

where u(r) is a strictly periodic function. 
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which justifies our ansatz. 


