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Docking methods are widely employed in 
drug design 



 Figure 1. The increase in the number of papers, from 1990 to 2013, retrieved from the PubMed Central (PMC)-NCBI database 
(http://www.ncbi.nlm.nih.gov/pmc/). Keywords were ‘docking’ or ‘dock’ shown in the abstract or title. 

Yu-Chian Chen null, Volume 36, Issue 2, 2015, 78–95 

http://dx.doi.org/10.1016/j.tips.2014.12.001 
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Docking: to find best ways to put two 
molecules together 

 
•  Ligand docking:   inhibitor discovery or design 

(autodock4, vina, dock, FlexX, Gold, Glider …) 
•  Protein-protein docking: to predict how two proteins bind 

and how strong they bind 
•  Protein-DNA docking …. 

 
•  Obtain 3D structures of two molecules. 
•  Locate the best binding site 
•  Determine the best binding mode 

Ø Three Steps  
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Aspects of Docking Problem 
•  Sampling docked complexes:  location, 

orientation, conformation 
•  Scoring docked complexes: the lower the 

binding free energy, the stronger the 
binding 

•  Ideal approach: Fast sampling, accurate 
scoring. 

To search for possible geometries for binding, 
A global optimization problem 

To discriminate different binding 
modes/conformations, compounds 



Scoring methods 
A fast and simplified estimation of binding energy 

 
 
 
 
 
 

Binding free energy 

Ka = Kd
−1 =

[PL]
[P][L]

P + L PL
ka

kd

ΔGbind = −RT lnKa = RT lnKd

1 nm inhibitor:  the free energy of binding =  0.5961*log(10-9) = -12.4 kcal/mol. pKd =9 
1 um inhibitor: the free energy of binding =   0.5961*log(10-6)=  - 8.2 kcal/mol. pKd = 6 



Scoring Function is Important in Protein-Ligand Docking Applications  

q  Binding affinity prediction 

… 

pKd 

q  Binding mode identification 
 

q  Virtual screening 
 



Classification of scoring functions 
q  Force Field-Based Scoring Function 

q Using non-bonded interaction terms from classical force field 
q Sometimes including solvation terms by GB/SA or PB/SA 

q  Empirical Scoring Function 
q Sum of several physical meaningful terms 
q Coefficients are derived from the regression analysis on 

experimental data 

q  Knowledge-Based Scoring Function 
q Statistical potential by using probability of finding atom pairs at a 

given distance between P and L 
q Require large number of terms 

q  Descriptor-Based Scoring Function 
q A pool of descriptors related to protein-ligand interaction 
q Machine learning algorithm to build the model 

 
 Liu, J.; Wang, R. J. Chem. Inf. Model. 2015, 55, 475-482 
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AutoDock3, 4 
(autodock.scripps.edu) 

Sampling:  Simulated annealing,   Genetic algorithm . 



AUTODOCK  
VINA 

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of 
docking with a new scoring function, efficient optimization and multithreading, 
Journal of Computational Chemistry 31 (2010) 455-461 



AutoDock Vina 
q  Gauss1, Gauss2, Repulsion, Hydrophobic, HBond, Nrot 

q  First five based on surface distance 
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Trott, O.; Olson, A.J.; J. Comput. Chem.  2010, 31, 455-461 
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pKd(Vina) = -0.73349 * g(cinter)  
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Scoring Function is the key in Protein-Ligand docking 
applications  

q  Binding affinity prediction 

… 

pKd 

q  Binding mode identification 
 

q  Virtual screening 
 



Evaluation Metrics of Scoring Functions 
Comparative Assessment of Scoring Function (CASF) benchmark 

 
Scoring power (binding affinity prediction ) 

o  Linear correlation between predicted binding affinity and experimental binding affinity
  

 
Docking power (binding mode identification) 

o  Success rate of identifying the native binding mode among computer generated decoys 
 
 

Screening power (Virtual screening) 
o  Success rate of Identifying the true binders to a given target protein among a pool of 

random molecules 
 
 

•  CASF-2007: Scoring and docking powers 
•  CASF-2013: Scoring, docking and screening powers 

 
 Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R.; J. Chem. Inf. Model.  2009, 49, 1079-1093 

Li, Y.; Han, L.; Liu, Z.; Wang, R.; J. Chem. Inf. Model.  2014, 54, 1717-1736 
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DS::LigScore2

GlideScore::SP

DrugScorePDB::PairSurf

DS::PLP1

Autodock Vina

GOLD::ASP

0 10 20 30 40 50 60 70 80 90
Success rate (%) of best pose

Scoring power is less satisfactory than  
docking/screening power 

16 Scoring functions and Autodock Vina are evaluated in CASF-2007 

Scoring power 
0.216 to 0.644 

Autodock Vina: 0.566 

Docking power  
30.6% to 82.5% 

Autodock Vina: 77.9% 

Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R.; J. Chem. Inf. Model.  2009, 49, 1079-1093 

SYBYL::F−Score

SYBYL::PMF−Score
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DS::LUDI3
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DS::PLP1

SYBYL::ChemScore

Autodock Vina

DrugScore(CSD)

X−Score::HMScore

0.0 0.2 0.4 0.6 0.8
R

✔ ?




Scoring power is less satisfactory than  
docking/screening power 

Scoring power (R)  
0.221 to 0.614 

Autodock Vina: 0.557 

Screening power  
3.08% to 60.0% 

Autodock Vina: 44.6% 

Docking power 
18.5% to 85.1% 

 Autodock Vina: 85.1% 

Li, Y.; Han, L.; Liu, Z.; Wang, R.; J. Chem. Inf. Model.  2014, 54, 1717-1736 

20 Scoring functions and Autodock Vina are evaluated in CASF-2013 
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RFbScores Achieve Excellent Scoring Power 

Ballester, P. J.; Mitchell, J. B. O. Bioinformatics 2010, 26, 1169-1175 
Ballester, P. J.; Schreyer, A.; Blundell, T. L. J. Chem. Inf. Model. 2014, 54, 944-955 
Li, H.J.; Leung, K.S.; Wong, M.H.; Ballester, P.J. Molecules 2015, 20, 10947-10962 
Zilian, D.; Sotriffer, C.A. J. Chem. Inf. Model.  2013, 53, 1923-1933 
Gabel, J.; Desaphy, J.; Rognan, D. J. Chem. Inf. Model.  2014, 54, 2807-2815 
Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R.; J. Chem. Inf. Model.  2009, 49, 1079-1093 
Gabel, J.; Desaphy, J.; Rognan, D. J. Chem. Inf. Model.  2014, 54, 2807-2815 

function scoring power (R) 
RF-Score::Elem-v2 0.803 

RF-IChem 0.791 

SCFscoreRF 0.779 

X-ScoreHM 0.644 

CASF-2007 

function scoring power (R) 

RF-Score::VinaElem 0.752 

X-ScoreHM 0.614 

CASF-2013 

Random Forest-based Scoring Function (RFbScore) 

•  Superior performance in predicting experimental protein-ligand binding affinity  



RFbScores Fail in Docking and Screening 

Gabel, J.; Desaphy, J.; Rognan, D. J. Chem. Inf. Model.  2014, 54, 2807-2815 

Random Forest-based Scoring Function (RFbScore) 

•  Superior performance in predicting experimental protein-ligand binding affinity 

•  Fail in docking/screening tests 

Beware of Machine Learning-Based Scoring FunctionsOn the
Danger of Developing Black Boxes
Joffrey Gabel, Jeŕeḿy Desaphy, and Didier Rognan*

Laboratoire d’Innovation Theŕapeutique, UMR 7200 CNRS-Universite ́ de Strasbourg, 74 route du Rhin, F-67400 Illkirch, France

*S Supporting Information

ABSTRACT: Training machine learning algorithms with
protein−ligand descriptors has recently gained considerable
attention to predict binding constants from atomic coordinates.
Starting from a series of recent reports stating the advantages
of this approach over empirical scoring functions, we could
indeed reproduce the claimed superiority of Random Forest
and Support Vector Machine-based scoring functions to predict
experimental binding constants from protein−ligand X-ray
structures of the PDBBind dataset. Strikingly, these scoring
functions, trained on simple protein−ligand element−element distance counts, were almost unable to enrich virtual screening hit
lists in true actives upon docking experiments of 10 reference DUD-E datasets; this is a a feature that, however, has been verified
for an a priori less-accurate empirical scoring function (Surflex-Dock). By systematically varying ligand poses from true X-ray
coordinates, we show that the Surflex-Dock scoring function is logically sensitive to the quality of docking poses. Conversely, our
machine-learning based scoring functions are totally insensitive to docking poses (up to 10 Å root-mean square deviations) and
just describe atomic element counts. This report does not disqualify using machine learning algorithms to design scoring functions.
Protein−ligand element−element distance counts should however be used with extreme caution and only applied in a meaningful
way. To avoid developing novel but meaningless scoring functions, we propose that two additional benchmarking tests must be
systematically done when developing novel scoring functions: (i) sensitivity to docking pose accuracy, and (ii) ability to enrich hit
lists in true actives upon structure-based (docking, receptor−ligand pharmacophore) virtual screening of reference datasets.

■ INTRODUCTION
Predicting the absolute binding free energy from atomic three-
dimensional (3D) coordinates of protein−ligand complexes is
one of the remaining grand challenges for computational chemists.
When applied to drug discovery, it should enable to signifi-
cantly enhance, for the right reasons, hit rates in structure-based
virtual screening, and guide medicinal chemists in the hit to lead
optimization of experimentally confirmed hits.
From the pioneering work of Böhm1 in the early 1990s

on designing a fast scoring function from first-principles, many
approaches (regression-based empirical scoring function,
potential of mean force, molecular mechanics), descriptors
and protein−ligand datasets have been utilized to predict inhibi-
tion constants from protein−ligand atomic coordinates.2−4

If current fast scoring functions have proven their capacity to
discriminate true actives from nonbinding ligands in hundreds
of structure-based virtual screening reports;5 they are still
unable, with few exceptions, to predict binding constants at
a precision (ca. 1 pKi unit) required for structure-based hit to
lead optimization. Numerous public6,7 and private initiatives8

have been addressed to the community of computational
chemists, to enhance the accuracy of fast scoring functions.
Among the main directions that have been followed are (i) the
design of larger,8 higher-quality,9 and more-diverse10 training/
test sets of protein−ligand complexes; (ii) the use of novel
protein−ligand interaction descriptors;8 and (iii) the application

of nonlinear regression methods11,12 to link descriptors to
experimental data.
Despite time and expertise spent on this issue, very modest

improvements had been achieved until a recent series of
independent studies reporting the usage of machine learning
algorithms to predict absolute binding free energies.13−15

A striking example was illustrated by two reports of Ballester
et al.14,15 training a Random Forest (RF) model on very simple
descriptors (protein−ligand element−element distance counts),
and predicting binding constants with a standard deviation of
1.5 pKi units, whereas all previous classical empirical scoring
functions had been leveling off at a plateau close to 2 pKi
units.4,14 Very intriguingly, the accuracy of the corresponding
RF score was shown to be inversely correlated to the physical
relevance of the descriptors on which the model was trained
on (element-dependent distance counts > atom type-dependent
distance counts > true interaction descriptors).14

From our viewpoint, it is difficult to understand why ultra-
simple descriptors (element−element distance counts) would
outperform interaction-driven attributes in predicting binding
free energies. Therefore, in this manuscript, we give a close
inspection to the RF score and develop two machine learning
(ML)-based scoring functions following prior Ballester’s work.14,15

Received: July 8, 2014
Published: September 10, 2014

Article

pubs.acs.org/jcim

© 2014 American Chemical Society 2807 dx.doi.org/10.1021/ci500406k | J. Chem. Inf. Model. 2014, 54, 2807−2815

D
ow

nl
oa

de
d 

by
 N

EW
 Y

O
RK

 U
N

IV
 o

n 
Se

pt
em

be
r 1

, 2
01

5 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

): 
Se

pt
em

be
r 2

4,
 2

01
4 

| d
oi

: 1
0.

10
21

/c
i5

00
40

6k



Random Forest 
 

•  An ensemble learning method based on the 
aggregation of numerous decision trees 

•  Performs remarkably well with very little tuning 
required 

•  Can handle a large feature set and correlated 
features 

•  Can also be used for assessing feature importance 
and feature selection. 

 

 
 

Breiman, L. Machine Learning 2001, 45, 5-32 
Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer New York Inc.: New York, 2009 
Wyner, A.J.; Olson, M.; Bleich, J.; Mease, D. 2015, arXiv:1504.07676 
Wager, S.; Walther, G. 2015, arXiv:1503.06388 
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Random Forest – Interpolating  

Leaf 

q  Given input features (variable, predictor)  XT = (X1, X2, …, Xp) 

q  Real-valued output Ytrain 

q  The predicted Ypred for each tree is in range [min(Ytrain), max(Ytrain)] 

q  Each leaf in the tree is an average value of a Ytrain subset. 



Random Forest – Self-averaging 

q  The predicted Ypred for each tree is in range [min(Ytrain), max(Ytrain)] 

q  The predicted Ypred for random forest is in range [min(Ytrain), max(Ytrain)] 

B Trees 

f*1(x) 
Predict point x 

f*2(x) f*B-1(x) f*B(x) 

fbag(x) =
1
B

f *b(x)
b=1

B

∑

yes no

1

2

4

5

10

11

3

6

12

13

7

14

15

gauss2 < 1081

gauss2 < 672

Hydrophobic < 9.1

Hydrophobic < 47

gauss1 < 91

gauss2 < 1690

6.4
n=1105  100%

5.2
n=411  37%

4
n=115  10%

5.6
n=296  27%

5
n=148  13%

6.2
n=148  13%

7.1
n=694  63%

6.6
n=402  36%

5.9
n=116  10%

6.8
n=286  26%

7.9
n=292  26%

7.2
n=101  9%

8.3
n=191  17%

yes no

1

2

4

5

10

11

3

6

12

13

7

14

15

yes no

1

2

4

5

10

11

3

6

12

13

7

14

15

gauss2 < 1081

gauss2 < 672

Hydrophobic < 9.1

Hydrophobic < 47

gauss1 < 91

gauss2 < 1690

6.4
n=1105  100%

5.2
n=411  37%

4
n=115  10%

5.6
n=296  27%

5
n=148  13%

6.2
n=148  13%

7.1
n=694  63%

6.6
n=402  36%

5.9
n=116  10%

6.8
n=286  26%

7.9
n=292  26%

7.2
n=101  9%

8.3
n=191  17%

yes no

1

2

4

5

10

11

3

6

12

13

7

14

15

yes no

1

2

4

5

10

11

3

6

12

13

7

14

15

gauss2 < 1081

gauss2 < 672

Hydrophobic < 9.1

Hydrophobic < 47

gauss1 < 91

gauss2 < 1690

6.4
n=1105  100%

5.2
n=411  37%

4
n=115  10%

5.6
n=296  27%

5
n=148  13%

6.2
n=148  13%

7.1
n=694  63%

6.6
n=402  36%

5.9
n=116  10%

6.8
n=286  26%

7.9
n=292  26%

7.2
n=101  9%

8.3
n=191  17%

yes no

1

2

4

5

10

11

3

6

12

13

7

14

15

yes no

1

2

4

5

10

11

3

6

12

13

7

14

15

gauss2 < 1081

gauss2 < 672

Hydrophobic < 9.1

Hydrophobic < 47

gauss1 < 91

gauss2 < 1690

6.4
n=1105  100%

5.2
n=411  37%

4
n=115  10%

5.6
n=296  27%

5
n=148  13%

6.2
n=148  13%

7.1
n=694  63%

6.6
n=402  36%

5.9
n=116  10%

6.8
n=286  26%

7.9
n=292  26%

7.2
n=101  9%

8.3
n=191  17%

yes no

1

2

4

5

10

11

3

6

12

13

7

14

15



Predicted Value from Random Forest is 
Bounded by Training Set 
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Regression Tree Demo 
 
•  Each green point presents one training set complex 

from PDBBind v2007 

•  Gauss2 and Hydrophobic are two features from 
Autodock Vina 

•  Each leaf node contains a subset of training set  

•  Averaged pKd of subset complexes is used as predicted 
value 

 
 

•  The predicted pKd pred from each tree is in range [min(pKd train), max(pKd train)] 

•  The predicted pKd pred  from random forest is in range [min(pKd train), max(pKd train)] 

T(X;Dtrain*) =
1
NA

pKd
(i )

i∈A
∑



Random forest can only do interpolation  
and CANNOT do extrapolation 

Example: y = x + N(0, 0.3), 1000 points 

•  Linear regression can do extrapolation 

•  Random forest can only predict data point in training space 
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Wyner, A.J.; Olson, M.; Bleich, J.; Mease, D. arXiv:1504.07676 
Wager, S.; Walther, G. arXiv:1503.06388 



Extrapolation is Needed for Docking/
Screening 

•  Random forest is designed to do interpolation and CANNOT do extrapolation 

o  The predicted value from random forest is bounded by the training set 

•  Inferior performance of docking/screening for RFbScores comes from 

1.  Only using crystal structure as training set 

2.  Interpolation nature of Random Forest  
Docking Space 

Crystal 

Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R.; J. Chem. Inf. Model.  2009, 49, 1079-1093 
Li, Y.; Liu, Z.; Li, J.; Han, L.; Liu, J.; Zhao, Z.; Wang, R.; J. Chem. Inf. Model.  2014, 54, 1700-1716 
Dunbar, J.B.; et al; J. Chem. Inf. Model.  2011, 51, 2036-2046 



Two-pronged Strategy 
1.  Expanding the training set  

o  Experimental subset  

o  Decoy subset 

 

2.  ΔvinaRF approach use RF to parameterize correction to Vina score to take 

advantage of  

o  the excellent docking power of Vina 

o  the strength of RF in improving scoring accuracy 

 

ΔvinaRF20 is a scoring function based on ΔvinaRF approach with 20 features. 

 

 

 

Ramakrishnan, Dral, Rupp, von Lilienfeld, J. Chem. Theory Comput. 2015, 11, 2087. 
Wang, C.; Zhang, Y.K.; J. Comput. Chem.  2017, 38, 169-177. 
 



 Expanding the Training Set 

Experimental subset (3336) 
Crystal structures with 
experimental binding affinity. 

PDBbind-v2014 

Docking Space 

Decoy Crystal 

Dunbar, J.B.; et al; J. Chem. Inf. Model.  2011, 51, 2036-2046 
Huang, S.Y.; Zou, X.Q. J. Chem. Inf. Model.  2011, 51, 2107-2114 
http://www.csardock.org/downloads/DECOY_ALL.htm 
Li, Y.; Liu, Z.; Li, J.; Han, L.; Liu, J.; Zhao, Z.; Wang, R.; J. Chem. Inf. Model.  2014, 54, 1700-1716 
Wang, C.; Zhang, Y.K.; J. Comput. Chem.  2017, 38, 169-177. 

Decoy subset (3322) 
Decoy structures generated 
by docking with binding affinity 
estimated by Vina. 

CSAR-decoys 

No overlap with CASF-2007 and CASF-2013 

Two Subsets of Training Set 



ΔvinaRF approach 

pKd(ΔvinaRF) = pKd(Vina) + ΔpKd(RF) 

Vina score as base scoring function. 

Taking care of extrapolation & Good docking power of Vina. 

Correction to Vina score by random forest model 

Taking advantages of RF in improving scoring accuracy. 



Autodock Vina 

•  Gauss1, Gauss2, Repulsion, Hydrophobic, HBond, Nrot 

•  First five based on surface distance 
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Trott, O.; Olson, A.J.; J. Comput. Chem.  2010, 31, 455-461 

7DEOH �� $XWRGRFN 9LQD ZHLJKWV DQG WHUPV

:HLJKW 7HUP
������� JDXVV1 �ω1�
�������� JDXVV2 �ω2�
����� 5HSXOVLRQ �ω3�
������� +\GURSKRELF �ω4�
������ +\GURJHQ ERQGLQJ �ω5�
������ 1URW �ω�
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20 Features in ΔvinaRF20  

10 Autodock Vina Features (source code) 

 

5  Interaction Terms  

•  Non-hydrophobic 

•  Hydrogen bond 

•  Solvation from Autodock4 

•  Electrostatic term with x = 1 and x = 2 

 

 

5 ligand dependent Terms 

•  Number of heavy atoms 

•  Number of hydrophobic atoms 

•  Number of torsions 

•  Number of rotors 

•  Ligand length 
 

10 Pharmacophore-based buried SASA Features 

 

9 pharmacophore types 

•  Positive 

•  Negative 

•  Donor-Acceptor 

•  Donor 

•  Acceptor 

•  Aromatic 

•  Hydrophobic 

•  Polar 

•  Halogen 

 

1 Total SASA 
 
 
 

electrostatic(a1,a2,d) =
qa1 ⋅qa2
d x



ΔvinaRF20 Performs Superior in CASF2013 
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Scoring power (R) 
ΔvinaRF20: 0.686 

Autodock Vina: 0.557 
X-ScoreHM: 0.614 

Screening power  
ΔvinaRF20: 60.0% 

Autodock Vina: 44.6% 
GlideScore-SP: 60.0% 

Docking power 
ΔvinaRF20: 86.7% 

Autodock Vina: 85.1% 

Li, Y.; Han, L.; Liu, Z.; Wang, R.; J. Chem. Inf. Model.  2014, 54, 1717-1736 



ΔvinaRF20 Performs Well in CASF-2007 
Scoring power 
ΔvinaRF20: 0.732 

Autodock Vina: 0.566 
X-ScoreHM: 0.644 

Docking power 
ΔvinaRF20: 80.5% 

Autodock Vina: 77.9% 
Gold::ASP: 82.5% 
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Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R.; J. Chem. Inf. Model.  2009, 49, 1079-1093 



Summary 
ΔvinaRF20 is a scoring function based on ΔvinaRF approach with 20 features 
achieves supeior performance in scoring, docking and screening power for 
CASF-2007 and CASF-2013 benchmarks in comparison with classical scoring 
functions. 

•  Expanding the training set  

o  Experimental subset  

o  Decoy subset 

•  ΔvinaRF approach  

o  the excellent docking power of Vina 

o  the strength of RF in improving scoring accuracy 

•  20 Features 

o  10 Features from Autodock Vina Source Code 

o  10 Pharmacophore-based SASA 

C. Wang and Y. Zhang, J. Comput. Chem. , 38 , 169-177 (2017). 
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